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About me and this talk
• Postdoctoral Researcher at Center for IT-Security, 

Privacy and Accountability (CISPA)
• Focus on WebSec Research for PhD
• Now also on Systems and Network Security
• Repeat offender at OWASP
• Base for this talk is a paper at CCS 2015
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Agenda
• Client-Side what...? (Intro & History of Client-Side XSS)
• But why? (Motivation and Contribution)
• How to get a nice data set? (Bragging about our work)
• How complex is a flow? (Sciency stuff)
• So, highlights? (Facepalms and Brain Benders + Quiz)
• How to do it right? (Best practices)
• TL;DR? (Conclusion)
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INTRO AND HISTORY OF CLIENT-SIDE
CROSS-SITE SCRIPTING
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Client-Side Cross-Site Scripting
• a.k.a. DOM-based Cross-Site Scripting
• ... caused by insecure JavaScript code

• Visit http://vuln.com/#'/><script>alert(1)</script>
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document.write("<img src='//adve.rt/ise?hash=" + location.hash.slice(1)+ "'/>");

<img src='//adve.rt/ise?hash= HASHVALUE '/>

<img src='//adve.rt/ise?hash= <script>alert(1)</script> '/>'/>
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A Brief History of Client-Side XSS
• 2005: Amit Klein coins the term „DOM-based XSS“
• 2011: Stefano di Paolo first releases DOMinator

– Uses taint tracking to find data flows
• 2013: Lekies et al. conduct large-scale study

– Find that more than 10% of Top 5k domains are vulnerable
• 2014: Stock et al. evaluate XSSAuditor and propose new

defense using taint tracking
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MOTIVATION AND CONTRIBUTION
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Motivation
• Previous research in this area focused on the

detection and mitigation in the browser
• No analysis of underlying issues

• Our focus: analyze real-world vulnerabilities
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Topics of this talk
• Analyze real-world client-side XSS vulnerabilities
• Answer a numer of questions:

– Are analysts overwhelmed by the complexity of
flows?

– Are developers not aware of the pitfalls?
– Are there special circumstances in the Web model

that cause such flaws?
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DATA SET
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Components
• Taint-Enhanced Browsing Engine

– mark all user-provided data as "tainted"
– precise information on source of each character
– additional information about encoding
– all relevant sinks report tainted access

• Crawling Extension
– steers browser to crawl given set of domains
– collects and transmits flow information

11



Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Suspicious Flow = Vulnerability?
• Taint tracking engine reports suspicious flows of data

– From attacker-controllable source to sink, not encoded using any
built-in function (e.g., escape or encodeURI)

• è Not every flow is actually vulnerable
– Need to verify that flow is exploitable

<script>
if (/^[a-z][0-9]+$/.test(location.hash.slice(1)) {

document.write(location.hash.slice(1));
}

</script>
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Infrastructure Overview

Crawl X
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Exploited!
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Resulting Vulnerabilities
• 1,146 vulnerable URLs in Alexa Top 10,000 domains

– Only slightly lower number vulnerable domains
• 1,273 distinct vulnerabilities

– i.e., one page, multiple vulnerabilities
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Resulting Vulnerabilities
• 1,273 real-world exploits

– many of them minified
• Causes issues with metrics

– many of them not stable (e.g. banner rotation)
• Need to be normalized for a sound analysis
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Normalizing the Data Set

1. Cache and beautify HTML, JavaScript
2. Proxy with „fuzzy matching“
3. Analyze pages with taint-aware engine to collect traces
4. Post-process reports (e.g. jQuery detection)
5. Application of Metrics / Additional Analysis
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Cache

Beautified
Proxy Post-processing Analysis
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FLOW COMPLEXITY
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Measuring Complexity of Flows
• Existing approaches measure complexity of code base

– e.g. McCabe: # of linearly independent paths through program
• Our notion: How hard is for an analyst to decide that a 

flow is actually vulnerable?
• Find measurable properties of complexity
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M1: Number of operations on tainted data

• Intuition: more operations, more chance to miss 
something important
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M2: Number of involved functions

• Functionality can be split up into functions
• Intuition: The more functions, the harder it is to follow the

data flow
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M3: Number of involved contexts

• JavaScript may resides in several scripts elements
– Inline scripts
– Externally included JavaScript files

• Intuition: When you have to switch between inline scripts
and external files, you might loose track
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M4: Code locality of source and sink

• Lines of code between source and sink
– If they even reside within the same context

• Intution: Data flows within a couple of lines are easier to
spot
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M5: Call Stack Relation Source and Sink

• Intuition: Detecting
flows is harder when
you cannot follow the
flows directly
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Relative to sink access in SE #3
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Relation 1
<script>
var source = location.href;
...
document.write(source);
</script>
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Relation 5
<script>
var global = location.href;
...
</script>
...
<script>
eval(global);
</script>
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Metric Results

0 5 10 15 20 25+
0

50

100

150

200

250

300

350

26

0 5 10 15+
0

100

200

300

400

500

600

0 1 2 3 4 5+
0

200

400

600

800

0 100 200 300 400 500+
0

100

200

300

400

500

600

700

M1: Operations M2: Functions

M3: Contexts M4: Locality



Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Putting the Results into Perspective
• Derive 80th and 95th percentile for all metrics

– Either low, medium or high complexity
• Overall score = single highest rating of any classifier

– Notion: see if metrics correlate or not
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80th 95th 100th

M1 <= 9 <= 22 > 22
M2 <= 4 <= 10 > 10
M3 <= 2 3 > 3
M4 <= 75 <= 394 > 394
M5 R1, R2 R3, R4 R5
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Combined Classification
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Low Complexity Medium Complexity High Complexity

M1 1,079 134 60
M2 1,161 85 27
M3 1,035 178 60
M4 920 179 51
M5 1,094 120 59
Combined 813 (63.9%) 261 (20.5%) 199 (15.6%)
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Is Complexity the Causing Factor?

80th 95th 100th

M1 <= 9 <= 22 > 22
M2 <= 4 <= 10 > 10
M3 <= 2 3 > 3
M4 <= 75 <= 394 > 394
M5 R1, R2 R3, R4 R5

80th 95th 100th

M1 <= 20 <= 44 > 44

M2 <= 9 <= 19 > 19

M3 <= 2 3 > 3

M4 <= 189 <= 1,208 > 1,208

M5 R1, R2, R3 R4 R5
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Vulnerable flows Randomly sampled flows

Maybe, but randomly
sampled flows are more

complex
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FACEPALMS AND BRAIN BENDERS
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Facepalms
• 350 one liners

– document.write(location.href);

• 542 with less than five operations
– Mostly concat of hard-coded + user-controlled data

• Personal favorite: w3schools.com 
– document.write("Page location is " + 
location.href);
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Brain Benders
• 59 non-linear control flows (R5)

– No means to follow the data flow
– Sometimes even event-driven

• 31 functions were passed in the most complex flow
• up to 291 operations conducted on tainted data

– Mostly regexps tests for sub-domains, though
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Involving Third-Parties
• Included third-party JavaScript code is executed in 

context of including site
– Vulnerable third-party code è own site vulnerable
– Code might change, even though URL remains the same

• 273 vulnerabilities caused only by third-party code
• 25 flaws due to outdated, vulnerable version of jQuery

– Same version on 472 pages, most did not use the vulnerable API
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Non-linear control flow
// inline
var parts = window.location.href.split("#");
if (parts.length > 1) {

var kw = decodeURIComponent(parts.pop());
var meta = document.createElement('meta');
meta.setAttribute('name', 'keywords');
meta.setAttribute('content', kw);
document.head.appendChild(meta);

}

// third-party
var kwds = getKwds();
document.write('<iframe src="...&loc=' + kwds + '"></iframe>');
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QUIZ TIME
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Is there something wrong here?
function escapeHtml(s) {
var div = document.createElement('div');
div.innerHTML = s;
var scripts = div.getElementsByTagName('script');
for (var i = 0; i < scripts.length; ++i) {
scripts[i].parentNode.removeChild(scripts[i]);

}
return div.innerHtml;

};
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There is something wrong here!
function escapeHtml(s) {
var div = document.createElement('div');
div.innerHTML = s;
var scripts = div.getElementsByTagName('script');
for (var i = 0; i < scripts.length; ++i) {
scripts[i].parentNode.removeChild(scripts[i]);

}
return div.innerHtml;

};
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innerHTML does not 
execute script elements

It does, however, allow to
create event handlers...



Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Is there something wrong here?
var slotId = parseInt(userdata, 10);
if (slotId) {
AD_CLB_fillSlot(userdata);

}
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There is something wrong here!
var slotId = parseInt(userdata, 10);
if (slotId) {
AD_CLB_fillSlot(userdata);

}

39

parseInt("1<script>") will 
not crash, but return 1
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Is there something wrong here?
jQuery("#warning404 .errorURL").html(
location.href.replace(/</,"&lt;"))
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There is something wrong here!
jQuery("#warning404 .errorURL").html(
location.href.replace(/</,"&lt;"))
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First parameter is a regular
expression, does not have

global modifier



Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Underlying Causes
• Are analysts overwhelmed by the complexity of flows?

– Some flows are quite complex, but randomly sampled flows are
more complex on average

• Are developers not aware of the pitfalls?
– Improper API usage, single line flaws, explicit decoding

• Are there special circumstances in the Web model that
cause such flaws?
– Third-party flaws cause vulnerability in including application
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BEST PRACTICES
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Best practices: document.write
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// vulnerable
document.write("<base href=' " + location.href "'>");

// fixed
var base = document.createElement("base");
base.href = location.href;
document.body.appendChild(base);
// or
document.write(base.outerHtml);
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Best practices: avoid eval
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if (url.indexOf('?') >= 0) {
var qs = url.slice(url.indexOf('?') + 1).split('&');
for (var i = 0; i < qs.length; i++) {
var t_p = qs[i].split('=');
if (t_p.length == 2) {
eval('data.' + t_p[0] + '="' + t_p[1] + '";');

}
}

}
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Best practices: avoid eval
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if (url.indexOf('?') >= 0) {
var qs = url.slice(url.indexOf('?') + 1).split('&');
for (var i = 0; i < qs.length; i++) {
var t_p = qs[i].split('=');
if (t_p.length == 2) {
data[t_p[0]] = t_p[1];

}
}

}
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Best practices: third parties
• Ask your advertisement provider if they know what DOM-

based XSS is ;-)
• Does your ad really need full access to your main

domain?
– Run it in a frame with a different sub domain to contain damage

47



Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Best practices: third parties
• Update your libraries!

– Use retire.js to find them if necessary
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SUMMARY AND CONCLUSION
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Summary & Conclusion
• Covered basics and history of Client-Side XSS
• Investigated a data set of 1,273 real-world vulnerabilities
• Several causes: complexity, unawareness, third parties
• Bad examples and best practices
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