
Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Ben Stock, Stephan Pfistner, Bernd Kaiser, Sebastian
Lekies, Martin Johns

From Facepalm to Brain Bender –
Exploring Client-Side Cross-Site
Scripting

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

About me and this talk
• Postdoctoral Researcher at Center for IT-Security,

Privacy and Accountability (CISPA)
• Focus on WebSec Research for PhD
• Now also on Systems and Network Security
• Repeat offender at OWASP
• Base for this talk is a paper at CCS 2015

2

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Agenda
• Client-Side what...? (Intro & History of Client-Side XSS)
• But why? (Motivation and Contribution)
• How to get a nice data set? (Bragging about our work)
• How complex is a flow? (Sciency stuff)
• So, highlights? (Facepalms and Brain Benders + Quiz)
• How to do it right? (Best practices)
• TL;DR? (Conclusion)

3

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

INTRO AND HISTORY OF CLIENT-SIDE
CROSS-SITE SCRIPTING

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Client-Side Cross-Site Scripting
• a.k.a. DOM-based Cross-Site Scripting
• ... caused by insecure JavaScript code

• Visit http://vuln.com/#'/><script>alert(1)</script>

5

document.write("");

<img src='//adve.rt/ise?hash= <script>alert(1)</script> '/>'/>

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

A Brief History of Client-Side XSS
• 2005: Amit Klein coins the term „DOM-based XSS“
• 2011: Stefano di Paolo first releases DOMinator

– Uses taint tracking to find data flows
• 2013: Lekies et al. conduct large-scale study

– Find that more than 10% of Top 5k domains are vulnerable
• 2014: Stock et al. evaluate XSSAuditor and propose new

defense using taint tracking

6

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

MOTIVATION AND CONTRIBUTION

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Motivation
• Previous research in this area focused on the

detection and mitigation in the browser
• No analysis of underlying issues

• Our focus: analyze real-world vulnerabilities

8

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Topics of this talk
• Analyze real-world client-side XSS vulnerabilities
• Answer a numer of questions:

– Are analysts overwhelmed by the complexity of
flows?

– Are developers not aware of the pitfalls?
– Are there special circumstances in the Web model

that cause such flaws?

9

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

DATA SET

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Components
• Taint-Enhanced Browsing Engine

– mark all user-provided data as "tainted"
– precise information on source of each character
– additional information about encoding
– all relevant sinks report tainted access

• Crawling Extension
– steers browser to crawl given set of domains
– collects and transmits flow information

11

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Suspicious Flow = Vulnerability?
• Taint tracking engine reports suspicious flows of data

– From attacker-controllable source to sink, not encoded using any
built-in function (e.g., escape or encodeURI)

• è Not every flow is actually vulnerable
– Need to verify that flow is exploitable

<script>
if (/^[a-z][0-9]+$/.test(location.hash.slice(1)) {

document.write(location.hash.slice(1));
}

</script>

12

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Infrastructure Overview

Crawl X

Report X

Exploit
Generator

Reports

U
R

Ls

Exploit cand.

Crawl Exploit

Exploited!

13

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Resulting Vulnerabilities
• 1,146 vulnerable URLs in Alexa Top 10,000 domains

– Only slightly lower number vulnerable domains
• 1,273 distinct vulnerabilities

– i.e., one page, multiple vulnerabilities

14

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Resulting Vulnerabilities
• 1,273 real-world exploits

– many of them minified
• Causes issues with metrics

– many of them not stable (e.g. banner rotation)
• Need to be normalized for a sound analysis

15

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Normalizing the Data Set

1. Cache and beautify HTML, JavaScript
2. Proxy with „fuzzy matching“
3. Analyze pages with taint-aware engine to collect traces
4. Post-process reports (e.g. jQuery detection)
5. Application of Metrics / Additional Analysis

16

Cache

Beautified
Proxy Post-processing Analysis

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

FLOW COMPLEXITY

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Measuring Complexity of Flows
• Existing approaches measure complexity of code base

– e.g. McCabe: # of linearly independent paths through program
• Our notion: How hard is for an analyst to decide that a

flow is actually vulnerable?
• Find measurable properties of complexity

18

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

M1: Number of operations on tainted data

• Intuition: more operations, more chance to miss
something important

19

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

M2: Number of involved functions

• Functionality can be split up into functions
• Intuition: The more functions, the harder it is to follow the

data flow

20

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

M3: Number of involved contexts

• JavaScript may resides in several scripts elements
– Inline scripts
– Externally included JavaScript files

• Intuition: When you have to switch between inline scripts
and external files, you might loose track

21

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

M4: Code locality of source and sink

• Lines of code between source and sink
– If they even reside within the same context

• Intution: Data flows within a couple of lines are easier to
spot

22

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

M5: Call Stack Relation Source and Sink

• Intuition: Detecting
flows is harder when
you cannot follow the
flows directly

23

Relative to sink access in SE #3

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Relation 1
<script>
var source = location.href;
...
document.write(source);
</script>

24

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Relation 5
<script>
var global = location.href;
...
</script>
...
<script>
eval(global);
</script>

25

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Metric Results

0 5 10 15 20 25+
0

50

100

150

200

250

300

350

26

0 5 10 15+
0

100

200

300

400

500

600

0 1 2 3 4 5+
0

200

400

600

800

0 100 200 300 400 500+
0

100

200

300

400

500

600

700

M1: Operations M2: Functions

M3: Contexts M4: Locality

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Putting the Results into Perspective
• Derive 80th and 95th percentile for all metrics

– Either low, medium or high complexity
• Overall score = single highest rating of any classifier

– Notion: see if metrics correlate or not

27

80th 95th 100th

M1 <= 9 <= 22 > 22
M2 <= 4 <= 10 > 10
M3 <= 2 3 > 3
M4 <= 75 <= 394 > 394
M5 R1, R2 R3, R4 R5

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Combined Classification

28

Low Complexity Medium Complexity High Complexity

M1 1,079 134 60
M2 1,161 85 27
M3 1,035 178 60
M4 920 179 51
M5 1,094 120 59
Combined 813 (63.9%) 261 (20.5%) 199 (15.6%)

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Is Complexity the Causing Factor?

80th 95th 100th

M1 <= 9 <= 22 > 22
M2 <= 4 <= 10 > 10
M3 <= 2 3 > 3
M4 <= 75 <= 394 > 394
M5 R1, R2 R3, R4 R5

80th 95th 100th

M1 <= 20 <= 44 > 44

M2 <= 9 <= 19 > 19

M3 <= 2 3 > 3

M4 <= 189 <= 1,208 > 1,208

M5 R1, R2, R3 R4 R5

29

Vulnerable flows Randomly sampled flows

Maybe, but randomly
sampled flows are more

complex

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

FACEPALMS AND BRAIN BENDERS

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Facepalms
• 350 one liners

– document.write(location.href);

• 542 with less than five operations
– Mostly concat of hard-coded + user-controlled data

• Personal favorite: w3schools.com
– document.write("Page location is " +
location.href);

31

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Brain Benders
• 59 non-linear control flows (R5)

– No means to follow the data flow
– Sometimes even event-driven

• 31 functions were passed in the most complex flow
• up to 291 operations conducted on tainted data

– Mostly regexps tests for sub-domains, though

32

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Involving Third-Parties
• Included third-party JavaScript code is executed in

context of including site
– Vulnerable third-party code è own site vulnerable
– Code might change, even though URL remains the same

• 273 vulnerabilities caused only by third-party code
• 25 flaws due to outdated, vulnerable version of jQuery

– Same version on 472 pages, most did not use the vulnerable API

33

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Non-linear control flow
// inline
var parts = window.location.href.split("#");
if (parts.length > 1) {

var kw = decodeURIComponent(parts.pop());
var meta = document.createElement('meta');
meta.setAttribute('name', 'keywords');
meta.setAttribute('content', kw);
document.head.appendChild(meta);

}

// third-party
var kwds = getKwds();
document.write('<iframe src="...&loc=' + kwds + '"></iframe>');

34

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

QUIZ TIME

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Is there something wrong here?
function escapeHtml(s) {
var div = document.createElement('div');
div.innerHTML = s;
var scripts = div.getElementsByTagName('script');
for (var i = 0; i < scripts.length; ++i) {
scripts[i].parentNode.removeChild(scripts[i]);

}
return div.innerHtml;

};

36

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

There is something wrong here!
function escapeHtml(s) {
var div = document.createElement('div');
div.innerHTML = s;
var scripts = div.getElementsByTagName('script');
for (var i = 0; i < scripts.length; ++i) {
scripts[i].parentNode.removeChild(scripts[i]);

}
return div.innerHtml;

};

37

innerHTML does not
execute script elements

It does, however, allow to
create event handlers...

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Is there something wrong here?
var slotId = parseInt(userdata, 10);
if (slotId) {
AD_CLB_fillSlot(userdata);

}

38

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

There is something wrong here!
var slotId = parseInt(userdata, 10);
if (slotId) {
AD_CLB_fillSlot(userdata);

}

39

parseInt("1<script>") will
not crash, but return 1

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Is there something wrong here?
jQuery("#warning404 .errorURL").html(
location.href.replace(/</,"<"))

40

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

There is something wrong here!
jQuery("#warning404 .errorURL").html(
location.href.replace(/</,"<"))

41

First parameter is a regular
expression, does not have

global modifier

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Underlying Causes
• Are analysts overwhelmed by the complexity of flows?

– Some flows are quite complex, but randomly sampled flows are
more complex on average

• Are developers not aware of the pitfalls?
– Improper API usage, single line flaws, explicit decoding

• Are there special circumstances in the Web model that
cause such flaws?
– Third-party flaws cause vulnerability in including application

42

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

BEST PRACTICES

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Best practices: document.write

44

// vulnerable
document.write("<base href=' " + location.href "'>");

// fixed
var base = document.createElement("base");
base.href = location.href;
document.body.appendChild(base);
// or
document.write(base.outerHtml);

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Best practices: avoid eval

45

if (url.indexOf('?') >= 0) {
var qs = url.slice(url.indexOf('?') + 1).split('&');
for (var i = 0; i < qs.length; i++) {
var t_p = qs[i].split('=');
if (t_p.length == 2) {
eval('data.' + t_p[0] + '="' + t_p[1] + '";');

}
}

}

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Best practices: avoid eval

46

if (url.indexOf('?') >= 0) {
var qs = url.slice(url.indexOf('?') + 1).split('&');
for (var i = 0; i < qs.length; i++) {
var t_p = qs[i].split('=');
if (t_p.length == 2) {
data[t_p[0]] = t_p[1];

}
}

}

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Best practices: third parties
• Ask your advertisement provider if they know what DOM-

based XSS is ;-)
• Does your ad really need full access to your main

domain?
– Run it in a frame with a different sub domain to contain damage

47

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Best practices: third parties
• Update your libraries!

– Use retire.js to find them if necessary

48

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

SUMMARY AND CONCLUSION

Ben Stock (@kcotsneb) – From Facepalm to Brain Bender

Summary & Conclusion
• Covered basics and history of Client-Side XSS
• Investigated a data set of 1,273 real-world vulnerabilities
• Several causes: complexity, unawareness, third parties
• Bad examples and best practices

50

