

2

If You Can’t Beat ‘Em Join ‘Em
Practical Tips For Running a Successful Bug Bounty Program

Grant McCracken
Shpend Kurtishaj

AppsecEU Rome
April 1, 2016

3

Grant

Technical Account Manager @Bugcrowd

(formerly an ASE)

Before that, Whitehat

Did some traveling

Music

4

Shpend

AppSec Engineer (ASE) @Bugcrowd

Team Lead

Bugbounty Hunter

Gamer

5

Bug Bounty Programs

6

wut

7

A (Brief) History of Bug Bounty Programs

8

Why?

9

Do you really want to let people attack you?

Source: http://hyperboleandahalf.blogspot.com/2010_06_01_archive.html

10

Yes! (They’re doing it anyways…)

Source: http://hyperboleandahalf.blogspot.com/2010_06_01_archive.html

11

Who are these people?

All over the place!

All ages

All levels of experience

All over the world

Users and non-users

Passionate about security

12

Value

Lots of eyes

Only pay for valid results

Shows a more advanced security posture

Better overall reputation!

13

How?

14

How?

Pre-Launch

Scope
Focus
Exclusions
Environment
Access

Post-Launch

Managing Expectations
Communicating Effectively
Defining a Vulnerability Rating Taxonomy (VRT)

BSides Austin 2016 – If You Can’t Beat ‘Em Join ‘Em © Bugcrowd 2016

16

“Touch the code, pay the bug.”

17

You vs. and Them

18

Pre-Launch

19

Step 0...
Basic resources/requirements to run a program…

Scope defines the researcher’s universe
Leave nothing open to interpretation
Understand your attack surface
The path of least resistance

Scope, scope, scope

20

Focus

You might care about specific:

Targets
Vuln types
Functionalities (e.g. payment processing)

How?

Incentives
Create a focused program

Source: https://xkcd.com/1361/

21

Exclusions

You might not care about:

(Low-impact) “Low-hanging fruit”
Intended functionality
Known issues
Accepted Risks
Issues resulting from pivoting

22

Environment

Prod vs. Staging?

Make sure it can stand up to testing!

Scanners

Contact forms

Pentesting requests

Special bounty type? IoT?

Researcher environments?

23

What a shared environment looks like...

24

Access

- Easier = better

- Provide researchers with the

resources they’ll need to be successful

(e.g. credit cards, etc).

- No shared creds

25

Remember...

26

Post-Launch

BSides Austin 2016 – If You Can’t Beat ‘Em Join ‘Em © Bugcrowd 2016

� Be prepared
Triage Process
Communication
Vulnerability Rating Taxonomy
Horror Stories
Success Stories

27

$UNPREPARED_COMPANY

Recipe for disaster:

Does not have human resources

Bad/Unclear exclusions

Don’t provide known issues

Pays bad rewards

28

Triage Process

Reproduction Steps

Screenshots

Pocs

NOT Videos (without a supported writeup)

29

Triage Process

Good report
1. Go to url: http://target.com
2. Click on “button” x
3. Check burp for request z
4. Send to repeater
5. Modify param p to payload:

“><svg/onload=alert(1)
6. Send request
7. Browse http://target.com/me.php for

xss payload

Bad report
1. Login
2. Make the following request:

POST /suppliers/15 HTTP/1.1
...

3. XSS

30

Triage Process

Check Domain/Bug type if in scope

Check for duplicates

Replication Steps

Have accounts with diff roles ready

Have multiple browsers ready

Keep burp open (you’ll need it)
Keep the scope handy
Rename valid bug titles

31

Communication is Key

Researchers like:

Concise, unambiguous responses
ESL
Quick responses
Predictable time to reward

Stay on top of these issues!

32

Define a Vulnerability Rating Taxonomy

For you:

Speed up triage process
Track your organization’s posture
Arrive at reward amount more quickly

For them (if published):

Focus on high-value bugs
Avoid reporting won't fix issues
Feel a sense of trust (goes with brief)

33

Discuss the VRT at a Roundtable

Priority will change as your organization does.

Establish a discussion meeting to:

Review interesting bugs
Discuss additions to VRT
Propose changes to vulnerability classification/priorities

This is an ongoing process!

34

Horror Stories...

35

Horror Stories...

36

Horror Stories...

37

Horror Stories...

38

Horror Stories...

39

Success Stories

2013 (Pentest) 2014 (Bug Bounty)

Critical 0 0

High 1 25

Medium 1 8

Low 2 16

Source: https://www.canvaslms.com/security

Instructure

40

tl;dr

41

Source: https://xkcd.com/1256/

