
Using JIRA to manage Risks and
Security Champions activities

OWASP AppSecEU, Rome, 2016

Me
• Developer for 25 years

• AppSec for 13 years

• Day jobs:

• Leader OWASP O2 Platform
project

• Application Security Training
for JBI Training

• Part of AppSec team of:

• The Hut Group

• BBC

• AppSec Consultant and Mentor

• @Leanpub (buy for 0$)

• http://leanpub.com/u/DinisCruz

–  

Books Published

Books under development

Major revision with lots of new content
(based on Maturity Models app)

Ideas shown in this presentation  
and a lot more

See also:

http://blog.diniscruz.com/2016/03/new-era-of-software-with-modern.html

APPSEC AND DEVELOPERS

• (unit) Test - For me a test is anything that can be executed
with one of these Unit Test Frameworks: https://
en.wikipedia.org/wiki/List_of_unit_testing_frameworks

• RISK - Abuse the concept, found RISK to be best one for the
wide range of issues covered by AppSec, while being
understood by all players

• 100% Code Coverage - not the summit, but base-camp (i.e.
not the destination). And 100% code is not enough, we really
need 500% or more Code Coverage)

• AppSec ~= Non Functional requirements - AppSec is about
understanding and controlling app’s unintended behaviours

Disclamers

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

• This presentations is about AppSec

• AppSec is about:
– code, apps, CI, secure coding standards, threat models, frameworks,

code dependencies, QA, testing, fuzzing, dev environments, DevOps, ….

• InfoSec is about:
– Networks, Firewalls, Server security, Anti-virus, IDS, Logging, NOC,

Policies, end-user security, mobile devices, AD/Ldap management, user
provisioning, DevOps, ….

• If your ‘InfoSec’ team/person cannot code (and would not be hired
by the Dev team), then that is NOT AppSec.

• InfoSec is also very important (workflow described here can also be
used by them)

AppSec vs InfoSec

• You will become a better developer

• You will be paid better

Developers we need you to join AppSec

MATURITY MODELS APP

• App used on the JIRA tickets examples

• Open Source (https://github.com/DinisCruz/
Maturity-Models)

• Based on real world mapping of BSIMM on large
organisation

• Starting to be compatible with OWASP
OpenSAMM (help needed)

• Coded in NodeJS and AngularJS (v1) with 90%+
code coverage and full automated CI

Maturity Models

https://github.com/DinisCruz/Maturity-Models

Visualise Maturity Models

Edit Maturity Model

View Maturity Model Radar chart

View projects and schema

All data stored in JSON (git repo)

Mapped Attack Surface

1. Dev pushes code to GitHub

2. Github (main code repo)

• sends web hook to Travis

3. Travis
• clones repo, runs tests (API and UI)

• builds Docker Image (if all tests
pass)

• push Docker Image to Docker Hub

• clones QA repo fork, sync with QA
repo, adds extra commit to QA
repo fork, pushes to QA repo Fork

4. Docker Hub
• sends web hook to Docker Cloud

Continuous Integration (CI)
5. Docker Cloud

• contacts mapped Node (Digital
Ocean VM with Docker installer)

• docker host pulls image from
Docker cloud

• docker container starts

6.Github (QA fork repo)

• sends web hook to Travis

7.Travis

• clones repo, runs tests (QA
against deployed docker
image on Digital ocean)

• (in the future) will send web
hook to deploy to production
(if all tests pass)

Technologies used (40x)

see book for 
details on

each of these
 technologies

SECURITY CHAMPIONS

Security Champions (SC)

http://blog.diniscruz.com/2015/10/what-are-security-champions-and-what-do.html

If you don’t have an SC, get a Mug

JIRA WORKFLOW

1.Open JIRA issues for all AppSec issues

2.Write passing tests for issues reported

3.Manage using AppSec RISK workflow
1.Fix Path: Open, Allocated for Fix, Fix, Test Fix, Close

2.Accept Risk Path: Open, Accept Risk, Approve Risk,
(Expire Risk)

4.Automatically report RISK’s status

Proposed JIRA workflow

RISK Workflow (using JIRA in Cloud)

PATH #1 - Fix issue

PATH #2 - Accept and Approve RISK

PATH #2 - Variation when risk not approved

 ‘FIX’ PATH

Issue: Data_Files.set_File_Data - Path Traversal

Status: OPEN

Status: IN PROGRESS

Status: ALLOCATED FOR FIX

Status: FIXING

Status: TEST FIX

Status: FIXED

PATH ‘RISK ACCEPT/APPROVE’

RISK: Support for coffee allows RCE

Status: OPEN

Status: IN PROGRESS

Status: AWAITING RISK ACCEPTANCE

Status: RISK ACCEPTED

Status: RISK APPROVED

Status: RISK APPROVED EXPIRED

All status changes are tracked

CASE STUDY: WHEN I CREATED A
VULNERABILITY

• Here is the code I wrote (at the Data Layer)

• This method is designed to be called by the
controller (i.e. rest api endpoint):

Feature request: Allow data editing on UI

Feature request: Allow data editing on UI

Regression test that passes on issue

Fix for Path transversal

Regression test

LET’S SEE HOW IT LOOKED IN
THE CODE

…before the vuln is created

…when the vuln is created

… adding comments

…after issues are created

…improving comments

…updating issues after 1st fix

… after final fix

KEY CONCEPTS FOR
JIRA RISK WORKFLOW

Key for AppSec JIRA workflow is this button

• This is a separate JIRA repo from the one used by devs
– I like to call that project ‘RISK’

– This avoids project ‘issue creation’ politics and ‘safe harbour for:
• known issues

• ’shadow of a vulnerability’ issues

• ‘this could be an problem…’ issues

• ‘app is still in development’ issues

– When deciding to fix an issue:

• that is the moment to create an issue in the target project JIRA (or
whatever bug tracking system they used)

– When issue is fixed (and closed on target project JIRA):

• AppSec confirms fix and closes RISK

Separate JIRA project

• Key is to understand that issues need to be
moving on one of two paths:
– Fix

– Risk Accepted (and approved)

• Risks (i.e. issues) are never in ‘Backlog’

• If an issue is stuck in ‘allocated for fix’, then
it will be moved into the ‘Awaiting Risk
Acceptance’ stage

Always moving until fix or acceptance

• If you don’t have 350+ issues on your JIRA RISK
Project, you are not playing (and don’t have
enough visibility into what is really going on)

• Allow team A to see what team B had (and scale
due due to issue description reuse)

• Problem is not teams with 50 issues, prob is team
with 5 issues

• This is perfect for Gamification and to provide
visibility into who to reward (and promote)

You need volume

• All issues identified in Threat Models are
added to the JIRA RISK project

• Create Threat models by
– layer

– feature

– bug

• … that is a topic for another talk

Threat model

Mapping to InfoSec risks

Mapping JIRA Tickets to Tests

JIRA AppSec Dashboards

Weekly emails with Risk status

• Components (one per team or project)

• Labels (to add metadata to issues, for OWASP Top 10)

• Links
– connect with internal/external issues and

– external resources

• Auto emails

• Copy and paste of images into description

• Markdown

• Security restrictions (use with care)

• Security lock certain actions

• Extra workflow actions for example when moving state)

• Create APPSEC JIRA project for AppSec related tasks (like ‘Create Threat
Model for app XYZ’)

Other powerful JIRA features

GITHUB RISK WORKFLOW

Using GitHub (instead of JIRA)

Example with DoS issue

TDD

• For TDD to be productive you need
– Real time unit test execution (when hands lift)

– Real time code coverage

• TDD focus needs to be on
– making developers more productive

– preventing developers from switching context

• If 99% code coverage doesn’t happen ‘by
default’ TDD workflow is not working

TDD

TDD in WebStorm with WallabyJS

What happens when you increase attack surface

You want a test to fail

TDD in WebStorm with WallabyJS

• … but is a topic for another talk :)

Thanks, any questions

@diniscruz

dinis.cruz@owasp.org

