

Everything You Need to Know About Certificate Pinning

But Are Too Afraid To Ask

\$ whoami

- John Kozyrakis
 - Technical strategist @ Cigital @ London, UK
 - Mobile security, secure architecture
 - Android static analysis, automation

<u>@ikoz</u> <u>https://koz.io</u> john.kozyrakis@owasp.org

Agenda

- Trust
- Pinning fundamentals
- Decision points
- Common mistakes
- Advanced topics

CERTIFICATE PINNING

SSL, CERTIFICATES & TRUST

Trust problem

• How can a client trust a server?

- Bind identity to Public Key
 - 1. CAs & X.509 chains
 - 2. Pinning
 - 3. Hybrid

X.509 & root CAs

"Trusted anchors" OS cert store

Trust evaluation

- Recursive X.509 certificate chain validation
 - Client assembles chain
 - from received end-entity cert to a trusted anchor
 - Checks validity of all certs (dates, constraints, signatures..)
- TLS-specific checks
 - Hostname Verification

Most mobile apps know their server

- OS anchor store solves the 'unknown server' problem
- But this problem <u>does not exist</u> for *most* mobile apps
- a-priori knowledge

CERTIFICATE PINNING FUNDAMENTALS

What is Pinning?

Goal: To associate an identity with a public key
 Association process owned by developers, not CAs

Benefits over normal TLS validation

- Protection against certificate forgery
 - Rogue CAs
 - Compromised CAs
 - Users phished into inserting certs to device trust store

Past Failures				
	 Researchers collided certificates on existing CA certificates 		ficates	
This section is 'further reading' for those interested	 http://www.win.tue.nl/~bdeweger/CollidingCertificates/ddl-full.pdf			
 Governments Want/Require Interception 	 DNS can become compromised 	ł		
Certified http://support.google.com/a	ndroid/bin/answer.py?hl=en&answe	er=1649774 🗗	/dns_hijack_service_updated/ ਯ	
 http://wv CRL/OCSP does not work as ex 	xpected/intended			
Governmen http://blog.spiderlabs.com/2011/04/certificate-revocation-behavior-in-modern-brows			n_victim_of_tmobiles_web_flaws	
http://wv https://blog.torproject.org/blog/detecting-certificate-authority-compromises-and-web-			s IMSI Catcher)	
 Vendors Pro User will break it too (not just bad guys) 		ting-cell-phone-calls/ &		
 http://wv http://www.esecurityplanet.com/mobile-security/hacker-bypasses-apples-ios-in-app- 		e subordinate CAs for money		
Governmen http://www.h-online.com/security/news/item/Apps-for-Windows-8-easily-hacked-176			9 🗗	
 https://w Interception proxies add additional risk 			te-for-surveillance-3040095011/	
Mobile Inter http://blog.cryptographyengineering.com/2012/03/how-do-interception-proxies-fail.ht			elide their responsibility	
Lawful ir HTTPS is broken			29 🗗	
Handset ma http://www.thoughtcrime.org/software/sslstrip/		e certificates out of the box		
http://ga • PKI is broken		89 🗗		
 Carriers car www.cs.auckland.ac.nz/~pg 	ut001/pubs/pkitutorial.pdf			
No refer • The Internet is Broken :)		id=1580452 @		
CAs can be http://blog.cryptographyengi	ineering.com/2012/02/how-to-fix-int	ternet.html 🗗		
 http://isc.sans.edu/diary.html?storyid=1150 	0 🗗	https://www.ow	- asp.org/index.php/Talk:Ce	
Researchers created Rogue CAs		tificate and Pu	ublic_Key_Pinning#Past_F	
http://www.win.tue.nl/hashclash/rogue-ca/ <u>ailures</u>		<u>ailures</u>		

Benefits over normal SSL validation

- Protection against *certificate forgery*
 - Rogue CAs
 - Compromised CAs
 - Users phished into inserting certs to device trust store
- Reduction of attack surface

Trusted authorities?

Certificate:				
Data:				
Version: 3 (0x2)				
Serial Number:				
51:63:0e:bd:fe:2d:8f:fc:79	9:71:03:76:3d:75:52:c3			
Signature Algorithm: sha256WithRSAEncryption				
Issuer:				
commonName	= VeriSign Class 3 Public Primary Certificat			
organizationalUnitName	= "(c) 2006 VeriSign, Inc For authorized			
organizationalUnitName	= VeriSign Trust Network			
organizationName	= "VeriSign, Inc."			
countryName	= US			
Validity				
Not Before: Sep 24 00:00:0	00 2015 GMT			
Not After : Sep 23 23:59:5	59 2025 GMT			
Subject:				
commonName	= Blue Coat Public Services Intermediate CA			
organizationalUnitName	= Symantec Trust Network			
organizationName	= "Blue Coat Systems, Inc."			
countryName	= US			

APPSEC EUROPE

Trust me, I'm a Root CA! Analyzing SSL Root CAs in Modern Browsers and Operating Systems. (ARES '15) Tariq Fadai, Sebastian Schrittwieser, Peter Kieseberg, and Martin Mulazzani. 2015.

Before pinning

- Concerned about *maliciously issued certificates*?
 - Yes
 - Pinning!
 - Maybe
 - Defense in depth
 - Not really
 - Not worth the effort for most

The downside

• <u>Will not</u> secure connections if pinned host compromised

- <u>Will</u> create a single point of failure
- <u>Will</u> cause operational headaches
- <u>Will</u> require maturity/coordination
- May impact performance

Not for local attacks

- Will not stop users intercepting own traffic
- Will not stop reverse engineers & local bypass
- Will not help if device is rooted/jailbroken
- If this is a goal...
 - Use message-level asymmetric encryption
 - Binary hardening, obfuscation, move to native
 - Client-side controls: you can't win, but can raise the bar

"Absence of Certificate Pinning"

- *Not* a security vulnerability
- May be a good practice for some
- "Broken pinning implementation" *IS* a security vulnerability

CERTIFICATE PINNING DECISION POINTS

Decisions, decisions

- 1. Which identity to pin to?
- 2. Pin to full cert or public key?
- 3. How to handle compromise?
- 4. How to handle rotation?
- 5. How to handle pin failures?
- 6. How to deploy the pins?

Pinning to end-entity identity

- Tiny attack surface
- No 3rd parties involved
- Easily self-signed
- No need for chain validation

• Highly fragile

APPSEC

Requires maturity

Pinning to intermediate CA identity

- More flexible
- Chain validation bugs
- Not easily self-signed
- ICA may change

• No guarantees pinned ICA is used

Pinning to root CA identity

- Most flexible
- Very wide attack surface
- Chain validation bugs
- Avoid cross-certified roots

Sertificate Viewer:"www.cigital.com"
General Details
Certificate Hierarchy
▼thawte Primary Root CA
▼thawte EV SSL CA - G3
www.cigital.com

Pinning to internal CA identity

- Secure and flexible
- Possible compliance issues
- Insecure access for non-pinning clients
- Chain validation bugs
- Impossible with some pinning implementations
- Requires operational maturity

Decisions, decisions

- 1. Which identity to pin to?
- 2. Pin to full cert or public key?
- 3. How to handle compromise?
- 4. How to handle rotation?
- 5. How to handle pin failures?
- 6. How to deploy the pins?

Certificate or Public Key?

- Full certificate
- Public key
- SPKI

	Certificate				
/	Version				
	Certificate Serial Number				
	Certificate				
/	Algorithm Identifier for				
	Certificate Issuer's Signature				
	Issuer				
	Validity Period				
	Subject				
1	Subject Algorithm Identifier				
	Public-Key Public-Key Value				
	Information				
	Issuer Unique Identifier				
	Subject Unique Identifier	/			
	Extensions				
\mathbf{X}					
	Cartification Authority's				
	Digital Signature				

Full certificate as pin

- Commonly used
- Easy pin creation
- Only option for some pinning implementations
- Only option for internal CA pinning
- Brittle
 - CA certificates often reissued/rotated
 - CAs may use multiple certs

Public key / SPKI as pin

- Trickier to get pins
- Flexible: allows key continuity
- Anonymized: pin hashes
- Several open source libraries require it
- Can't pin to internal self-signed CA
 - Depends on system's trust anchors

Decisions, decisions

- 1. Which identity to pin to?
- 2. Pin to full cert or public key?
- 3. How to handle compromise?
- 4. How to handle rotation?
- 5. How to handle pin failures?
- 6. How to deploy the pins?

How to handle compromise?

- Security != Usability
- Revocation? ☺
- Create action plan
- Fallback certs
 - Maintain an extra cert for each host off-line
 - Include fallback pin in app
- Enforce app updates for all users
 - Limit available functionality for older apps

33

Decisions, decisions

- 1. Which identity to pin to?
- 2. Pin to full cert or public key?
- 3. How to handle compromise?
- 4. How to handle rotation?
- 5. How to handle pin failures?
- 6. How to deploy the pins?

How to handle rotation?

- Keep track of your app's end points & pins
- Create cert rotation schedule
 - Issue new certs long before rotation
 - Do scheduled app updates
 - Review pins as part of update process
- Coordinate between PKI/servers/mobile teams
- Practice key continuity
 - Rotate certificate, not public key

Decisions, decisions

- 1. Which identity to pin to?
- 2. Pin to full cert or public key?
- 3. How to handle compromise?
- 4. How to handle rotation?
- 5. How to handle pin failures?
- 6. How to deploy the pins?

How to handle pin failures?

- Hard-fail: Do not establish the channel
 - Common, easy, secure
 - Inflexible, user experience issues, danger of self-induced DoS
- Soft-fail: retry without pinning
 - Tricky to get right, custom
 - Limit app functionality lower trust mode
 - "report mode"

Decisions, decisions

- 1. Which identity to pin to?
- 2. Pin to full cert or public key?
- 3. How to handle compromise?
- 4. How to handle rotation?
- 5. How to handle pin failures?
- 6. How to deploy the pins?

Pin deployment: preloading

- App ships with hardcoded pin list
 - Common
 - Easy to implement
 - Complex to operate
 - Maintain version/pin map, force updates
 - Requires app updates
 - To revoke/rotate pins
 - Insecurity window
 - Self-induced DoS

Pin deployment: Trust On First Use

- Preferred if no *a-priori* knowledge of endpoints
- Easy to roll out
- Fairly complex to design
- Pin expiration attack window
- Good for not-so-critical or unknown endpoints
 - WebView traffic
- Future? HPKP RFC7469

Pin deployment: Over The Air

- Very flexible
- Easy to deploy
- Easy to get wrong
 - Complexity, custom protocol, expirations
- Still have to pin the 'pin server'
- Still have to manage the pins

BUGS, FLAWS AND BAD DESIGNS

Avoid chain validation

- Never roll your own X.509 chain validation
- Use the system's TLS validation routines
 - Or a 3rd party library like OpenSSL
- Using the system's trust anchors is optional
- If pinning to CA cert
 - chain validation AND hostname verification

Don't pin all the things

- Pinning to the 20 most popular root CAs
- Attack surface reduction?
- Worth the trouble?

Limit attack surface per host

- Want to pin connections to 10 domains?
- Host-to-pin mapping

Don't forget half connections

- Apps may use multiple *connection handlers*
 - But only one might use of pinning
 - Seen app with 4 different networking stacks, 3 different pinning implementations, 1 broken, 1 without pins
- Pin ALL connections to pinned hosts
 - Centralise connection handling through app via library
- Try to take control of ALL connections in your app

Avoid TOCTOU bugs

- Skip pin validation if the host passed validation once?
- Secure only if SSL resumption / caching used
 - It most likely isn't
- Pin validation should be done for every request to pinned hosts

Be careful if caching

- Skip pin validation if cert in cache?
- Insecure if you cache CA certs
 - Chain validation bypass
 - May even bypass hostname verification

Some Java APIs are dangerous

- Always check pins on validated chain
- CVE-2016-2402 (okhttp ++)

X509TrustManager.checkServerTrusted()
javax.net.ssl.SSLSession.getPeerCertificates()
javax.net.ssl.SSLSession.getPeerCertificateChain()

ADVANCED TOPICS

Implementation taxonomy

- pin-no-eval
 - Pure end-entity pinning: No X.509/TLS evaluation
- eval-then-pin
 - 1. X.509 chain evaluation by system using system's trust anchors
 - 2. Check if pins inside the validated chain
- pin-then-eval
 - X.509 chain evaluation by system using your own trust anchors
- pin-then-custom-eval
 - X.509 chain evaluation by app using own trust anchors

Handling connections

- Invoke handler API for each pinned connection
 - Create custom "pinned" API in app
 - Use a pinning networking library
 - okhttp and others
- Automatically direct most* connections to your API
 - iOS: NSURLprotocol swizzling
 - Android: URL.setURLStreamHandlerFactory()

* excludes webviews, non-httsurlconnection...

Cert pinning implementation

- Android:
 - Careful: X509TrustManager.checkServerTrusted()
 - API 17+: X509TrustManagerExtensions.checkServerTrusted()
 - API 24+: Custom X509ExtendedTrustManager
- iOS:
 - custom NSURLConnectionDelegate: SecTrustEvaluate()
- System's OpenSSL library
 - Don't. Not great benefit, also restricted in Android API 24+
- Other libraries: okHttp, TrustKit, AndroidPinning....
- Statically compile OpenSSL (or other)
 - Much more resistant to local attacks but tricky to get right

Pinning & WebViews

- WebViews: used to render web pages in app
 - 1. Connection handler -> no native pinning support
 - 2. Rendering engine
- Android:
 - Intercept requests using shouldInterceptRequest()
 - load using own handler, feed response back to WebView
- iOS
 - Intercept connections using NSURLprotocol:startLoading()
 - load using own handler, feed response back to protocol
 - Pinning & WKWebView = only on iOS9
 (didReceiveAuthenticationChallenge)

Android Network Security Config

res/xml/network_security_config.xml:

```
<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
<domain-config>
<domain includeSubdomains="true">example.com</domain>
<pin-set expiration="2018-01-01">
<pin digest="SHA-256">7HIpactkIAq2Y49orFOOQKurWxmmSFZhBCoQYcRhJ3Y=</pin>
<!-- backup pin -->
<pin digest="SHA-256">fwza0LRMXouZHRC8Ei+4PyuldPDcf3UKg0/04cDM1oE=</pin>
</pin-set>
</domain-config>
</network-security-config>
```

Android Nougat


```
<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
<domain-config>
<domain includeSubdomains="true">secure.example.com</domain>
<domain includeSubdomains="true">cdn.example.com</domain>
<trust-anchors>
<certificates src="@raw/trusted_roots"/>
</trust-anchors>
</domain-config>
</network-security-config>
```

Summary

- Pinning is a headache
- Best: pin to end-entity
- Second best: pin to internal CA
- Preload pins for most sensitive connections
- Never validate X.509 chains manually
- Get your implementation reviewed

Questions?

59