
Using Third Party Components for
Building an Application Might be More

Dangerous Than You Think!

Achim D. Brucker Fabio Massacci Stanislav Dashevskyi

Abstract

2

Today, nearly all developers rely on third party components for building an application. Thus, for most software vendors, third
party components in general and Free/Libre and Open Source Software (FLOSS) in particular, are an integral part of their
software supply chain.

As the security of a software offering, independently of the delivery model, depends on all components, a secure software supply
chain is of utmost importance. While this is true for both proprietary and as well as FLOSS components that are consumed,
FLOSS components impose particular challenges as well as provide unique opportunities. For example, on the one hand,
FLOSS licenses contain usually a very strong “no warranty” clause and no service-level agreement. On the other hand, FLOSS
licenses allow to modify the source code and, thus, to fix issues without depending on an (external) software vendor.

This talk is based on working on integrating securely third-party components in general, and FLOSS components in particular,
into the SAP's Security Development Lifecycle (SSDL). Thus, our experience covers a wide range of products (e.g., from small
mobile applications of a few thousands lines of code to large scale enterprise applications with more than a billion lines of code),
a wide range of software development models (ranging from traditional waterfall to agile software engineering to DevOps), as
well as a multiple deployment models (e.g., on premise products, custom hosting, or software-as-a-service).

About Us
Achim D. Brucker
• Senior Lecturer (Software Security), University of Sheffield, UK
• Software Security Consultant
• Until 12/2015: Security Testing Strategist at SAP SE, Germany

3

Stanislav Dashevskyi
• PhD Student at the University of Trento and SAP SE, France

Part I:
Securing The Software Supply Chain

or
The Security Risk of Third Party Components

Preparation Development UtilizationTransition

Start of development Release decision

Training

• Security
awareness

• Secure
programming

• Threat modeling
• Security static
analysis

• Data protection
and privacy

• Security expert
curriculum

Risk
Identification

• Security Risk
Identification
and
Management
(SECURIM)

• Data Privacy
Impact
Assessment

• Threat
Modeling

Plan Security
Measures

• Plan product
standard
compliance

• Plan security
features

• Plan security
tests

• Plan security
response

Secure
Development

• Secure
programming

• Static code scan
• Code review

Security
Testing

• Dynamic testing
• Manual testing
• External security
assessment

Security
Validation

• Independent
security
assessment

Security
Response

• Execute the
security response
plan

Secure Software Development

Source: SAP’s Security Development Lifecycle (S2DL)

Preparation Development UtilizationTransition

Start of development Release decision

Training

• Security
awareness

• Secure
programming

• Threat modeling
• Security static
analysis

• Data protection
and privacy

• Security expert
curriculum

Risk
Identification

• Security Risk
Identification
and
Management
(SECURIM)

• Data Privacy
Impact
Assessment

• Threat
Modeling

Plan Security
Measures

• Plan product
standard
compliance

• Plan security
features

• Plan security
tests

• Plan security
response

Secure
Development

• Secure
programming

• Static code scan
• Code review

Security
Testing

• Dynamic testing
• Manual testing
• External security
assessment

Security
Validation

• Independent
security
assessment

Security
Response

• Execute the
security response
plan

Secure Software Development

Source: SAP’s Security Development Lifecycle (S2DL)

Preparation Development UtilizationTransition

Start of development Release decision

• Many external dependencies
• Only control over a small part of the

source code

How We Develop Software Today

• Very few external dependencies
• Full control over source code

How We Used To Develop Software

The Maintenance Challenge
• > 90% of customers are using

the latest two releases

• > 50 % of customers are using
releases older 10 years

Product Release EoL Ext. EoL

Windows XP 2001 2009 2014

Windows 8 2012 2018 2023

SAP SRM 2006 2013 2016

Red Hat 2012 2020 2023

Tomcat 2007 2016 n/a

Preparation Development UtilizationTransition

Start of development Release decision

Training

• Security
awareness

• Secure
programming

• Threat modeling
• Security static
analysis

• Data protection
and privacy

• Security expert
curriculum

Risk
Identification

• Security Risk
Identification
and
Management
(SECURIM)

• Data Privacy
Impact
Assessment

• Threat
Modeling

Plan Security
Measures

• Plan product
standard
compliance

• Plan security
features

• Plan security
tests

• Plan security
response

Secure
Development

• Secure
programming

• Static code scan
• Code review

Security
Testing

• Dynamic testing
• Manual testing
• External security
assessment

Security
Validation

• Independent
security
assessment

Security
Response

• Execute the
security response
plan

Secure Software Development

Source: SAP’s Security Development Lifecycle (S2DL)

Third-party
• Bill of material
• Licensing
• Maintenance

Identify
• Risk and
• Mitigation strategies
of third-party software

Plan third-party specific
• security response
• security tests

Secure consumption
of third-party software
(API usage, etc.)

Test secure
consumption of third
party software and act
on found vulnerabilities

Assess secure
consumption of third-
party software

Monitor vulnerabilities
of third party software
and fix/upgrade
vulnerable versions

Inbound Process

YESScan

Fork
and

remove

Fork
and
fix

Issues found
in unused

parts of OSS

Issues found
in used

parts of OSS

No issues found

Testing is
unsuccessful

Testing is
unsuccessful

Testing is successful

Testing is successful

Issues found, but
risk is acceptable

Analyze

Get the
results

Types of Third-Party Software
Commercial Libraries

Outsourcing
Bespoke Software

Freeware
Free/Libre Open
Source Software

(FLOSS)

• Outsourcing
• SAP HANA

• Jabra Device Driver
• NVIDIA Device Driver

• Apache Tomcat
• JQuery

Upfront costs High Low Low

Ease of access
(for developers) Hard Medium Easy

Modification of
Source Code Depends on contract Impossible Possible

Support contract Easy Hard Medium

Types of Third-Party Software
Commercial Libraries

Outsourcing
Bespoke Software

Freeware
Free/Libre Open
Source Software

(FLOSS)

• Outsourcing
• SAP HANA

• Jabra Device Driver
• NVIDIA Device Driver

• Apache Tomcat
• JQuery

Upfront costs High Low Low

Ease of access
(for developers) Hard Medium Easy

Modification of
Source Code Depends on contract Impossible Possible

Support contract Easy Hard Medium

Data Sources
Public

− FOSS information repositories
l Open Hub (formerly Ohloh)
l Core Infrastructure Initiative (CII) Census project

− Public databases of vulnerabilities
l National Vulnerability Database (NVD)
l Exploit Database website (ExploitDB)
l Open Sourced Vulnerability Database (OSVDB)

− Project data
l Coverity FOSS scan service
l Source code repositories

Internal
− Software inventory (e.g., Black Duck Code Center as used by SAP)

FLOSS Usage At SAP

Based on the 166 most used FOSS components (as of autumn 2015)

Programming Languages

Java
C
JavaScript
PHP
C++
Other

Vulnerabilities (CVEs)
DoS

Code execution

Overflow

Bypass something

Gain information

XSS

Gain privileges

Directory traversal

Memory corruption

CSRF

Part II:
Security of Open Source Enterprise Frameworks

or
Assessing Risks and Planning Efforts of the Secure

Consumption of FLOSS

Inbound Process
• Scenario:

many FOSS libraries are shipped with
many proprietary applications

• Legal issues
Identify licenses and check the compliance

• Security issues
Check FOSS for vulnerabilities

What We Want

https://www.flickr.com/photos/fimbrethil/4507848067/

1. How many vulnerabilities will be
published next year for component X?

2. How often do I need to ship a patch to fix
a vulnerability caused by component X?

Vulnerability Prediction?

Tomcat 6.x publicly known vulnerabilities (CVEs)

Vulnerability prediction?

Alhazmi & Malaiya & Ray. Data Applications and Security, 2005
Massacci & Nguyen. MetriSec, 2010

Vulnerability prediction?

Vulnerability Prediction: Problems
• There is not enough data

• Number of vulnerabilities depends on:
Age of the project
Number of users

• Sometimes you simply have no choice…

Understanding Factors Is More
Critical Than Predictions

l When will a vulnerability appear in a FOSS component?
l We do not know

l Can we distinguish features of projects causing
"problems" for consuming software?

l We use maintenance effort of proprietary consumers to denote “problems”
l Does the ”security culture” of FOSS developers make a difference?
l Does is make a difference which main language/technology is used?

Which Factors Are Interesting?

l Collect all possible data, build a regression model to
asses the impact of each factor

l Can we use all data that is available?
− Actual Total #LoCs of a component
− Added Total #LoCs of a component
− Removed Total #LoCs of a component
− Changed Total #LoCs (added, removed, etc.)...

Relationships Between Factors

Different Maintenance Models
l 60 products are using Apache Tomcat

− Requires a lot of expertise to resolve security issues
− It makes more sense to have a team of Apache Tomcat experts around

l 2 products are using a small JavaScript library
− This does not require any major expertise
− However, if a company ends up using large number of products for which only the

“local” expertise exists, it may be problematic

Centralized Security Maintenance
l Policy: dev. teams must select only components widely used and

supported within a company

l A central team resolves vulnerabilities in all FOSS components and
pushes changes to all consumers

l The security maintenance effort scales logarithmically with the
number of products consuming a component

Distributed Security Maintenance
l Policy: each dev. team is free of selecting appropriate components

l Each team has to take care of security issues individually

l While this model should decrease the effort for organizational aspects
(not considered by us), it adds up for the technical part of the effort

Hybrid Security Maintenance

Part III:
Practical Recommendations On

Controling Risk & Effort Of Using Third Party Components

Secure Software Development Life Cycle
l Maintain a detailed software inventory

(Do not forget the dependencies)
l Actively monitor vulnerability databases
l Assess project specific risk of third-party components

Obtaining components (or sources)
l Download from trustworthy sources

(https, check signatures/checksums)

Strategies For Controlling Risks (1/2)

Project Selection
l Prefer projects with private bug trackers
l Evidences of a healthy/working SDLC

l Documented security fixes/patches
(no “secret” security fixes)

l Documented security guidelines
l Use of security testing tools

Strategies For Controlling Risks (2/2)

https://www.coreinfrastructure.org/programs

Secure Software Development Life Cycle
l Update early and often
l Avoid own forks

(collaborate with FLOSS community)
Project selection

l Large user base
l Active development community
l Technologies you are familiar with
l Compatible maintenance strategy/life cycle
l Smaller (in terms of code size) and less complex might be better

Strategies For Controlling Effort

Part IV:
Conclusion

Do not waste time with unimportant questions!
(Is FLOSS more/less secure as proprietary software)

Implement a secure consumption strategy:
• Risk assessment of third party consumption (at least security & licenses)
• Plan for the efforts of secure consumption
• Plan the efforts/costs for response and maintenance

Conclusion

Do not waste time with unimportant questions!
(Is FLOSS more/less secure as proprietary software)

Implement a secure consumption strategy:
• Risk assessment of third party consumption (at least security & licenses)
• Plan for the efforts of secure consumption
• Plan the efforts/costs for response and maintenance

Conclusion

Final advice:
• Accept that you can be hit by a “black swan” (e.g., heartbleed)
• If it happens:

• Concentrate on understanding and fixing the issue
• Understanding why you did not find the swan

earlier should not be your first priority

Achim D. Brucker
Department of Computer Science
University of Sheffield
Regent Court
211 Portobello St.
Sheffield S1 4DP, UK

https://de.linkedin.com/in/adbrucker
https://www.brucker.uk
https://www.logicalhacking.com
a.brucker@sheffield.ac.uk

Stanislav Dashevskyi
University of Trento
Scuola di dottorato in Informatica e Telecomunicazioni
Via Sommarive, 14
38123 Povo, Italy

https://st.fbk.eu/people/profile/dashevskyi
stanislav.dashevskyi@unitn.it

Contact:

Thank you!

Bibliography
l Stanislav Dashevskyi, Achim D. Brucker, and Fabio Massacci. On the Security Cost of Using a Free and Open

Source Component in a Proprietary Product. In International Symposium on Engineering Secure Software and
Systems (ESSoS). Lecture Notes in Computer Science 9639, Springer-Verlag, 2016.
https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-foss-costs-2016.en.html

l Ruediger Bachmann and Achim D. Brucker. Developing Secure Software: A Holistic Approach to Security Testing.
In Datenschutz und Datensicherheit (DuD), 38 (4), pages 257-261, 2014.
https://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014.en.html

l Achim D. Brucker and Uwe Sodan. Deploying Static Application Security Testing on a Large Scale. In GI
Sicherheit 2014. Lecture Notes in Informatics, 228, pages 91-101, GI, 2014.
https://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014.en.html

l Achim D. Brucker. Bringing Security Testing To Development: How To Enable Developers To Act As Security
Experts, OWASP AppSecEU 2015. https://youtu.be/LZoz4cv0MAg
https://www.brucker.ch/bibliography/abstract/talk-brucker.ea-owasp-sectest-2015.en.html

36

