
Adam Muntner  
amuntner@mozilla.com

Open Source Approaches to Security
for Applications and Services

at Mozilla

Who is Adam?
• Security Engineer, Mozilla Enterprise Security team
• 4+ years Mozilla employee

– Re-architecting Mozilla’s Appsec program
– Program owner, Mozilla Web Bug Bounty

• Working in Infosec since 1998: Pentester, Consulting
Manager, Principal Consultant, CSO, Security Engineer

• FuzzDB (https://github.com/fuzzdb-project/fuzzdb)
• Based in NYC
• Reformed, former CISSP

2

https://github.com/fuzzdb-project/fuzzdb

Agenda
• Lessons learned from radical open sharing of design documentation

• Approaches to qualitative comparison of risk for an inventory of websites and services

• Using OpenSAMM in a DevOps organization

• Why your bug bounty program is one of the best sources of intelligence for driving the
future direction of your application security program

• Maximizing the value gained from identified vulnerabilities

• Get non-security engineers help pentest by setting up a Red Team

3

Lessons learned from
radical open sharing

of design documentation

4

5

Mozilla’s Appsec Threat Model
We make a web popular Open Source web browser

! Protecting users: our browser’s support is via the web

! Our security model expects our web services to be trustworthy
○ Installation, updates, crash reporting APIs, FxA, Addons, Hello, Sync,

etc.
○ Each is attractive to spammers, criminals, state actors for different

reasons
○ Our security model expects our web services to be trustworthy

6

Mozilla’s Appsec Threat Model

https://cwe.mitre.org/

There’s a long debate over whether whether open source software is more security by virtue of its model.
The correct answer is, it depends on from which actor’s point of view and their subjective values and goals and available alternatives.
There are too many variables that would apply in any particular to generalize.  
 
MITRE CWE - “Common Weakness Enumeration” is a categorical taxonomy of software weaknesses.
CWE-540 defines source code exposure as a security weakness.

That doesn’t mean “open source software is insecure,”
it means that the attacker can examine the code for flaws such as injection attacks or other execution paths that were never intended by the authors.

7 * Not a potential mitigation for Mozilla.

*

https://cwe.mitre.org/

Mozilla’s Appsec Threat Model

8

Mozilla’s Appsec Threat Model
Mozilla

Back End Systems

Firefox Accounts
Sync
Addons
Plugincheck
Loop/Hello
Crashreports
Telemetry
Etc...
+ ~3000 Websites

It take lots of web services support a modern browser.

9

Mozilla’s Appsec Threat Model

Luckily, the

attacker was

not particularly

ambitious.

More details: 
https://blog.mozilla.org/security/2015/08/06/firefox-exploit-found-in-the-wild/

Bugzilla is the site that worries me the most.
 
It’s where our open security bugs live.

Last year we discovered that an attack had gained access to security bugs through a legit account
 
A Firefox user informed us that an advertisement on a news site in Russia was serving a Firefox exploit in pdf.js that searched for sensitive files and uploaded them to a server that appears
to be in Ukraine….

https://blog.mozilla.org/security/2015/08/06/firefox-exploit-found-in-the-wild/

10

How much is our most sensitive data worth?
There are companies that pay for
security bugs in our products.

Goal of Zerodium and their
competitors: 
 
1. 0-day stays 0-day
2. Sell weaponized exploits
3. ???
4. Profit!

Mozilla’s Appsec Threat Model

There are companies that aren’t us who pay for security bugs for some of our products, sometimes more than we do.
 
One of my biggest concerns for protecting our users is protecting Bugzilla.

Where do the bugs go? 
 

11

Economics of the 0-Day
How much is our most sensitive data worth?

How much is it worth, to
whom?

Compared to what?

Cost of next available
substitute?

Polaris Privacy Initiative
https://wiki.mozilla.org/Polaris
https://blog.mozilla.org/netpolicy/2014/11/10/introducing-polaris-privacy-initiative-to-accelerate-user-focused-privacy-online/

The economics of 0-days….

$1 million was a bargain for the fbi, compared to the cost of next available substitute: 
 
If the FBI was willing to pay $1 million for the exploit, it’s only because the next available option to the FBI would have cost more than a million dollars, probably significantly more.  
 
State actors have virtually unlimited budgets, they don’t face the usual resource constraints, if they need more money, they print it.

https://wiki.mozilla.org/Polaris
https://blog.mozilla.org/netpolicy/2014/11/10/introducing-polaris-privacy-initiative-to-accelerate-user-focused-privacy-online/

12

Mozilla’s Appsec Threat Model

https://theintercept.com/2014/03/20/inside-nsa-secret-efforts-hunt-hack-system-administrators

The Intercept - Glenn Greenwald’s investigative journalism website
 
The screenshot on the left is from a leaked NSA slide deck.  
 
Take a look at the part I highlighted in red, on the right.

https://theintercept.com/2014/03/20/inside-nsa-secret-efforts-hunt-hack-system-administrators

13

Mozilla’s Appsec Threat Model

Unit 121
North Korean military unit

FSB
Russia

Ransomware.
crimeware,
botnets

Hacktivists

...

Attack on Mozilla service may not be the
final / only objective of an attacker

We are most attractive as an intermediate target.

...

Not picking on North Korea or Russia for any reason in particular, rather using them as exemplars that nearly every nation either has or is developing a cyberwar
capability.  
 
Because of Mozilla’s addons, usage in the TOR browser and ironically popularity among people interested in privacy, our products make an attractive target to
many organizations as a component of some larger goal.  
 
This is only one example of many actors with this kind of capability - not just state employed, sponsored, or tolerated,  
 
I don’t mean to scare you, but every single employee at Mozilla with any kind of access to internal resources is potentially a target, and not just by the NSA

There is another threat headline risk: that a news story story about a security issue will broadly and negatively affect our ability to pursue Mozilla’s mission.

14

We share (almost) everything
Example: Firefox Accounts (FxA)

https://wiki.mozilla.org/Identity/Firefox_Accounts#Architecture

Public  

● Source code
● Design docs
● Threat models
● Security tools
● Product mailing lists
● IRC
● Closed security bugs (Bugzilla)
● Incidents, post-incident

Not public  

● Details of internal network
● MozDef configs
● Runbooks
● Open security bugs
● Live incidents

https://wiki.mozilla.org/Identity/Firefox_Accounts#Architecture

Lessons: Open Source & Security
The implementation debate is dead.
• No relationship has been observed in the number of vulnerabilities in open source

or proprietary software
• Back doors have been observed in open source and proprietary software
• Only Open Source software can be freely audited

However…
Making source code available ≠ guarantee of review
Possibility of false sense of security (Many Eyes fallacy)

Solution: Build security in.

15

Implementation debate: is oss or closed-source software better for security?
No relationship has been observed in the number of vulnerabilities in open source or proprietary software.
Only Open Source software can be freely audited

There are several dedicated Mozilla security teams,
● Triage browser bugs
● Fuzzing team
● Content security (web standards like CSP)
● Cloud Services (where I worked for three years, supports the back end of services used by the browser like Sync, Addons, etc) 

Enterprise Information Security, which I moved to in late 2015 to work on re-evaluating our overall appsec program and run the web bug bounty program
in addition to others that have security responsibilities of various kinds, not to mention a number of very dedicated community members

Lessons: Open Source & Security

Completed Security Track reviews:
● libjpeg-turbo
● PCRE
● phpMySQLAdmin

 

16

2016 Budget: US$1.25 million
First set of awards: US$385,000[1]

Applications remain open[2] for Mission
Partners[3] and the Foundational Technology[4]
track which is for software that Mozilla already
uses or deploys.  
 
1.https://blog.mozilla.org/blog/2016/06/09/help-make-open-source-secure/
2.https://docs.google.com/forms/d/
1f0xSg9XM8v7YGdZ_FzeE67ggckbAsg6sH1mpQ4buTQE/viewform
3. https://wiki.mozilla.org/MOSS/Mission_Partners
4. https://wiki.mozilla.org/MOSS/Foundational_Technology

Mozilla Open Source Support
(MOSS) Security Track “Ratchet it up!”

Security is a something you do, it’s not a state.
Ratchet, as a verb, means to increase or tighten something in a series of small steps.
I got the phrase “ratchet it up” from my friend Perry Metzger, he runs the Cryptography mailing list which is the successor to the old Cypherpunks list.  
To ratchet up security for software Mozilla depends on, we have funded a program to test the software and libraries we use. Mozilla Open Source Support (MOSS)
is an awards program specifically focused on supporting the Open Source and Free Software movement, with a yearly budget of around $3 million.

With the security track, Mozilla will
●contract with and pay professional security firms to audit other projects’ code
●work with project maintainers to support and implement fixes, and to manage disclosure and
●pay for the remediation work to be verified, to ensure any identified bugs have been fixed. 

The other tracks just awarded grants to security and privacy related projects such as $152,500 to Tor for work on metrics to help make the network more stable,
$77,000 to Tails,a secure-by-default live operating system that aims at preserving the user’s privacy and anonymity, the money is for a method to verify that a Tails
image was built from known-good sources
PeARS: $15,500. PeARS (Peer-to-peer Agent for Reciprocated Search) is a lightweight, distributed web search engine which runs in an individual’s browser and
indexes the pages they visit in a privacy-respecting way.  
and others.
Which brings us to discussion about the web bug bounty program 
 
 

https://blog.mozilla.org/blog/2016/06/09/help-make-open-source-secure/
https://docs.google.com/forms/d/1f0xSg9XM8v7YGdZ_FzeE67ggckbAsg6sH1mpQ4buTQE/viewform
https://wiki.mozilla.org/MOSS/Mission_Partners
https://wiki.mozilla.org/MOSS/Foundational_Technology

Why your bug bounty program
is one of the best

sources of intelligence
for driving the future direction

of your Appsec program

17

The bugs submitted by external reporters reflect
what we aren’t preventing, finding, and fixing
Bug bounty trend data:

● Informs security engineering, training, detection, and planning efforts
● Helps website and service owners meet their security goals
● Increase security participation by being a forum for stakeholders of different

websites and services to discuss relevant security topics
● Using the Bounty program to target testing for specific sites and features,

supporting Mozilla's goals.

18

Web Bug Bounty - Inside Mozilla

Bounty programs aren’t a substitute for good development practices, code review, pentesting 
 
External reporters do help understand what the rest of your security program is missing

The program should be designed to encourage reporting for the kinds of bugs you’d like to hear about. You’re competing not just with other bounty programs, but with all other
available options that bounty hunters and potential bounty hunters have for their time.  
 
I mentioned an internal security mailing list - bounty bugs are excellent foil for discussion

Maximizing the value gained
from identified vulnerabilities

19

Get the most from your bugs
• Explicitly defining a bug pipeline
• Setting up channels of communication with developers about bugs

– Identify Security POC and champions for websites
– Internal mailing list to discuss relevant news stories, platform bugs, bugs

for similar software
• Looking for other similar instances of the same but on the same website/

service
• Using application inventory to find other applications using similar

technology stack and examining for similar issues

20

Explicitly define bug pipeline - if someone doesn’t own it, it probably isn’t going to happen consistently.  
 
Internal comms channels - discussing bugs in similar websites and products and frameworks to those you use, not just the bugs that affect your software. Talking about security is
fun, builds an internal security community, and the result will be fresh ideas & insights - learn from others problems, not just your own.

Next we’ll take a look at what Mozilla’s web bug intake workflow looks like.

Mozilla’s Web Bug Intake Workflow

21

Automated
Scanning

Web Bug
Verifiers

External Reporters

Security POC/backup, RPs

software
release
process

D
ev

s

O
th

er
s

O
ps

M
oz

ill
ia

ns

Bugs

Bug
Report

https://bugzilla.mozilla.org/form.web.bounty

Bug
Report

Pentest &
Code Review

Assist, 
Verify

 Website

Test

Test

Manage fix

Process maturity: High

One of my projects has been to reboot the process around our bug intake and workflow, this is what it looks like now

22

Mozilla Web Bug Bounty

Bug bounty is one of the centerpieces of our web app sec program

Mozilla was born from Netscape.  
Not going to retell the whole story of how Mozilla was born from Netscape Navigator, but it’s an interesting tale you can look up yoursel. 
 
The first bounty program was called the "Bugs Bounty," It was created by a technical support engineer named Jarrett Ridlinghafer in 1995 for the launch of Netscape Navigator 2.0 Beta. He also
created the first community support forum for the product.

 “I guess the project that I'm most proud of over these years might be the security bug bounty program that
Bart Decrem and I launched in 2004, and that Dan Veditz and I have managed since. It was adopted from
Netscape's program. It was considered crazy that any organization would actually invite security researchers
to tear their code apart, possibly disclose serious bugs, and embarrass the organization with a continuous
stream of bugs; and that we would actually pay out money for this. For many years no other organization had
the courage to create a similar program. But now all that has changed. This list says that over 450
organizations now have bounty programs inspired by ours. http://www.vulnerability-lab.com/list-of-bug-
bounty-programs.php

 We've paid out 2 million dollars in bounties but we've gotten 10x or more back in value from world class
security researchers looking at our code and giving us feedback from many different perspectives. At times
it's been noisy, rambunctious, worrisome, unpredictable, and hard; but we learned to embrace the noise,
harness it, and turn it all into quick fixes and re-architecture that's helped the security of hundreds of million
browser users. It set the sage for Mozilla to have the reputation for undeniably better security than IE and that
was a key to its growth….”

 “In both the crash reporting and bug bounty program cases I raised donations to get the programs going. For
 the crash reporting case it was donated software from Fullsoft and hardware from IBM, and in the bounty
 program it was seed money for bounties from Linspire and Mark Shuttleworth. I urge every mozillian to be
 entrepreneurial and use resources wisely. Spend money and time on things that will be long lasting.”

23

Mozilla Bug Bounty Program

Chris Hofmann

Dan Veditz

Chris Hofmann and Dan Veditz started the modern Mozilla bug bounty program in 2004, the web bounty came a few years later.
Chris recently left Mozilla after 10 years so he could sail more often, though I wouldn’t be surprised if he came back.
He said I could share his parting thoughts,Chris probably had more continuous years of working on a browser than any other living person, 20 years, he goes back to the
beginnings of Netscape Navigator. He also started Mozilla’s automated crash reporting system, mobile engineering, and ran the l10n internationalization effort - 60% of Mozilla
Firefox users are not English speakers. 
 
Dan Veditz does security engineering for the Firefox platform, he’s a walking encyclopedia of browser security history and has contributed to many of the RFCs that define the
security properties of HTTP and the web ecosystem 

http://www.vulnerability-lab.com/list-of-bug-bounty-programs.php

24

Web Bug Bounty: Today

One of my goals with the program is to shift the curve to more high value, difficult bugs, and get close as we can to eliminating bugs we should never produce, such as XSS, SQLI,
or remote OS command injection.

● Generate metrics about vulnerability trends in websites and vulnerability categories to inform the direction of security efforts <- information to help plan the overall appsec
effort

● Provide an entry point for Mozilla Enterprise Information Security to help support security for all Mozilla web developers. Including community sites Mozilla the company
doesn’t run directly, there are about ~3000. I’m still working on a complete list. ←---

● Invite participation through detailed reporting instructions and information to bug bounty hunters, allowing bug hunters to do deeper reviews and reducing our time-to-fix ←--
community

25

2016 Web Bounty Bug Stats, YTD
Avg. time-to-fix 1 day

Median time-to-fix 1 day

Max time-to-fix 3 days

5/5 within 72 hours

MAXIMUM
Avg. time-to-fix 9.4 days

Median time-to-fix 5.5 days

Max time-to-fix 31 days

7/10 within 7 days

HIGH

Avg. time-to-fix 15.35 days

Median time-to-fix 13 days

Max time-to-fix 37 days

10/11 within 30 days

MODERATE

Most Common Bugs:  
1. XSS (majority by one tester)

2. CSRF

The 31 day HIGH bug had been patched and wasn’t exploitable after a couple days, but there was additional follow-on work that kept the bug open a little longer. 
 
I changed a few things about how we run the web bounty -

One of the biggest was to pay on verification, not on fix, even though the typical “High” vuln gets fixed within a few days of reporting, now. Slow response times and failure to fix
make bug researchers unhappy, it increases the chances they will be told their bug is a dupe.

Another was to have all externally reported bugs come in through a form on Bugzilla, not by email as was the case in the past. The StartTLS flag-stripping bug is real. GPG is nifty
but I wanted to make bug reporting as easy as possible. I also rewrote the bug submission directions to help guide bounty hunters report more efficiently - the better the report, the
faster we can fix. BugCrowd’s recent report says that they see about 45% invalid submissions and 36% duplicates.  
 
We see few HIGH risk invalid bugs since the changes since the changes. The dupes are most often for things like text injection bugs that we’ve “wontfixed” because they don’t look
convincing enough to trick someone into doing something bad. We use some external vendors to host and manage a few services for us, we’ve gotten them to be a lot more
responsive and in one case that had persistent XSS that were repeatedly reported but that the vendor ignored and we received many dupe reports, we fired them. It’s not safe for
our users and it’s not respectful of bounty hunters time.

 
 
Web Bug Rotation 
 
 
I picked Mondays because that means I get to work 3 days worth of bugs per week. 

26

Mozilla Web Bounty Program
Changes:
● Bug verification procedures updated - https://wiki.mozilla.org/Security/Web_Bug_Rotation
● Improve and increase community activity
● Be a community resource for web bug testing, make engagement easier
● Improved web bug reporting form
● Improved guidance on bug reporting
● Bounty bugs reported using Bugzilla form, the Client program adopted this approach, too 

Inside Mozilla, getting the most value possible from each reported bugs.

Coming changes:
● Bonus pool for particular kinds of bugs on specific sites
● Community: IRC channel on our IRC server, outbound mailing list for bounty program comms
● More eligible websites

Bounty hunters shouldn’t have to hunt for sources and tech information.
 
Mozilla and community developed testing workflow documentation on Wiki, detailed into on apps, I appreciate the time they spend, and want to make their use of time as efficient as
possible.  
 
Upcoming MWOC project for college students - testing workflow for python web apps with known properties

https://wiki.mozilla.org/Security/Web_Bug_Rotation

Approaches to
qualitative comparison of risk

for an inventory of
websites and services

27

Most of this part of the talk is about the knowledge problem that makes this so difficult, it’s full of pitfalls and roadblocks.

Then, we’ll talk unfortunately a lot more briefly about the possible.

Measuring Risk for Inventory of Websites

What does “measuring risk” mean?

28

Or, Reason 65537 why I let my CISSP expire after trying unsuccessfully to give it back

Why we like to measure security

29

“I need to know how
we’re doing vs best

practice”

“Metrics provide a target
and focus people”

“I need to measure
performance against

goals”

“Are we screwing up?”
“How to explain what

we’re doing?”

“How can I show
change over time?”

“Reduce SLE, ALE and
ARO”

A focus on measures and metrics is often used to reach some desired state. This probably sounds familiar:

1.Management defines goal and comes up with a measure
2.Management establishes quarterly and annual targets
3.Management communicates the target, in terms of agreed measure
4.People do what they are being measured on

30

Why we like to measure security

Measurable Goal
Reduce

High Bugs
By 50%

It usually looks something like this

31

Why we like to measure security

Measurable Goal
Roll Out

The
Scanner

or like this

“I need to know how
we’re doing vs best

practice”

“Metrics provide a target
and focus people”

32

“Are the measures
meaningful?”

“We met our target, but
are further from our

goal, uh oh!” “Uh oh, how am I going
to explain this?”

“Does the measure
incentivize actions

counter to the ultimate
goal?”

Why we like to measure security?

The process sounds logical but can really be counter-productive.  
 
Overloading a metric for too many purposes leads to unintended consequences.

Performance metrics: Usually linked to performance targets, they substitute a number for a well-articulated goal. Unfortunately it’s only tracking progress towards the
decided upon metric, often with unhappy consequences.

Best Practice measurements: I don’t like that phrase because of the word best. Best is subjectively objective.
 Rarely is there any objective measurement of various options, rarely is evidence collected and analyzed to demonstrate that a practice is better than another, to some end.
This uses metrics as both a target and measure of performance. Implicitly this primes the brain to assume that “best practice” really is, not to think about whether it’s
appropriate to the organization and its challenges.  

Metrics target: The target is often the entire explanation of the goal. They’re easier to explain than complex goals. A metrics target like “reduce bugs by 50%” sounds clear
but it’s ultimately an arbitrary number designed to appeal to the management of the definer of the metrics as much as it’s tied to a real organizational goal.

33

Roll Out
The

Scanner

Reduce
High Bugs

By 50%

What could possibly go wrong

If your goal was ‘Reduce bugs by 50%’ and you implement a web app scanner that increases open bugs by 60%, did you succeed or fail?

Did we meet our target?
Did we reduce risk? How much?

34

Q1 Before Scanner Q2 After Scanner
Definitely did not meet bug

reduction target. :(

No way to know.  
 
We can account for the addition of the scanner  

There are too many variables that aren’t and can’t be accounted for. 

●New code
●False negatives
●Attackers develop new tools and techniques
● Insider threat
●Platform issues
● 3rd party code
● etc etc  
 
 
 
 

What did we learn about risk?

35

More bugs reported and
fixed for one website vs
another...

Which is at
greater risk?

No way to know, there are too many variables that aren’t and can’t be accounted for 
It’s too easy to assume that the first is safer, this is observational bias, also called the “streetlight effect.” 
 
 
 

What did we learn about risk?

36

Not much, there are too
many variables that

remain unseen.

A policeman sees a dunk searching under a streetlight for something and asks what he lost.  
The drunk man says that he lost his housekeys, the policeman helps him search.
After a while the policeman asks the drunk, “Are you sure you lost your keys here?” 
“No,” says the drunk man, “I’m not really certain, I think I parked them in the lost, burp, lost them in the park.” 
“So why are searching here??!” asks the Policeman?
The drunk response, “Because this is where the light is…” 
 
 
 

What is security, can it be measured?

Security, according to Oxford English Dictionary

• The state of being free from danger or threat
• The safety of a state or organization against criminal activity such as

terrorism, theft, or espionage
• Procedures followed or measures taken to ensure the safety of a state or

organization
• The state of feeling safe, stable, and free from fear or anxiety

37

What is security, can it be measured?
Security, according to Oxford English Dictionary

• The state of being free from danger or threat
• The safety of a state or organization against

criminal activity such as terrorism, theft, or
espionage

• Procedures followed or measures taken to ensure
the safety of a state or organization

• The state of feeling safe, stable, and free from fear
or anxiety

38

Pr
ob

ab
ili

ty
 o

f O
cc

ur
re

nc
e

Impact of RiskLow High
Low

High

Low-Level Risk

Medium-Level Risk

High-Level Risk

“Should you ignore a 49 percent probability risk, which will cause a 49 percent of maximum loss?
And why, in this example, should you pay maximum attention to a risk that has a 51 percent probability of occurring, with a loss of 51 percent of maximum loss?” 
 
How much can we really know about any of this?
With what confidence interval? 
 

What are the limits of our knowledge of risk?

39

Pr
ob

ab
ili

ty
 o

f O
cc

ur
re

nc
e

Impact of RiskLow High
Low

High

Low-Level Risk

Medium-Level Risk

High-Level Risk

Risk = Asset Value * Threat * Vulnerability * Impact

Hard to measure quantitatively or relatively

???

How much can we really know about any of this? 
 
Threat—A natural or man-made event that could have some type of negative impact on the organization.
Vulnerability—A flaw, loophole, oversight, or error that can be exploited to violate system security policy.

We can not possibly know enough to make use of tools like this in a meaningful way,
 
 

What are the limits of our knowledge of risk?

40

Pr
ob

ab
ili

ty
 o

f O
cc

ur
re

nc
e

Impact of RiskLow High
Low

High

Low-Level Risk

Medium-Level Risk

High-Level Risk

Risk = Asset Value * Threat * Vulnerability * Impact

Hard to measure quantitatively or relatively

???
GIGO

How much can we really know about any of this? 
 
Threat—A natural or man-made event that could have some type of negative impact on the organization.
Vulnerability—A flaw, loophole, oversight, or error that can be exploited to violate system security policy.

We can not possibly know enough to make use of tools like this.

We don’t really know what our scanner’s coverage are
Asset valuation, to whom, for what? Unless it’s a commodity item with a market price, GIGO
“Threat” is a singular word. How many real threats are single-factor? What if several threats coalesce in one event? What if several happen separately? GIGO
Vulnerability, Where do you draw the borders for your calculation? The app code? Framework? Libraries? OS? Platform? Other components? Firmware? CA certs? Rubber hose attack?
Theoretical attack categories? How many of you are pentesters that have combined several low and moderate bugs in creative ways to hack something? More GIGO 
 
The asset value of your customer database is “$432,000?” This is a totally meaningless statement, more GIGO
 
Just as true for Annualized Loss Expectancy, Single Loss Expectancy.
 
 

Qualitative Assessment?

41Source: Pearson CISSP Certification Guide

Here’s a screenshot from a CISSP certification guide that talks about qualitative assessment 
 
Let’s take a closer look:

Qualitative Assessment?

42Source: Pearson CISSP Certification Guide

Even though the
quantitative values are just
as if not more subjective...

Structurally aggregating
subjective opinions until you
reach consensus to measure
risk as a source of truth? No.

 
The downside is that you’re not working with meaningless dollar values?  
 
It’s derived from the opinions of experts so it’s not an “exact” assessment, but using dollar values that aren’t reflective of anything is, just because it’s a number? 
 
The quantitative method is pure scientism, not pure science.

Delphi technique? Also based on the experiential knowledge of participants, a 1971 paper critical of Delphi described it as “dredging of half-formed ideas from the
group memory.” It’s also been criticized as a way to shepherd a process to a pre-determined position. Not great if you are hoping for a source of truth. 
 
Loss of integrity of internal documents, “Medium.” This isn’t really useful either. It doesn’t mean much and there are too many extraneous, unknown variables. “Loss
of availability of internal documentation, “Low.” Totally ignores n-th order effects. Loss of availability of internal documentation in the table says Low, but what if it’s
the docs are the runbook for the customer db, whose loss of availability is high? That’s different than if the internal docs that aren’t available are for the lunch-break
table-tennis league.

Qualitative Assessment?

43Source: Pearson CISSP Certification Guide

Even though the
quantitative values are just
as if not more subjective...

Structurally aggregating
subjective opinions until you
reach consensus to measure
risk as a source of truth? No.

GIGO

What can we know about security?
Epistemology: Branch of philosophy that discusses theory of knowledge
Belief: Statement of faith or trust
“I believe the website is safe….”

Truth: In accord with facts, reality
"If p and q, then p”. “Software verification”
Ex: Coq Proof Assistant, https://coq.inria.fr/

Justification: Believe true proposition,
 for good reason

44

Risk: Delusion, assumption, based on faith vs logic

Is the spec right?
Verification = expensive, slow

Prove correctness of
components according to spec

See: http://www.csl.sri.com/users/shankar/VGC05/shankar-hcss.pdf

Risk: Believing what is true for a bad reason. If the justification is
false, it’s not knowledge, it’s coincidence.

The main problem epistemology attempts to solve is understanding what the requirements for “knowledge” are.

It’s really hard to make any true statement about security, other than that it’s hard to make a true statement about it. We like to talk about “security verification” and
“security assurance,” but these terms are neither useful or accurate.
The tools we use most often do not verify anything at all. They find bugs, generally shallow ones.
Our scanners and pentesting don’t prove code is safe if you find bugs and fix them, and they don’t prove it’s safe if you find no bugs.  

How do you do you approach formal verification of a large software system like a browser or a web server? For starters, the specification has to be good. With
HTML and HTTP for example the true specification is what servers and user agents support, the specs always trail the products. When a spec is introduced at the
W3C, it’s only meaningful if Google, Mozilla, Microsoft, and Apple implement it. But we could use it to ratchet up security for specific components that are most
critical: the browser kernel and the TLS stack implementation for example.  
 
Our programming languages were mostly not designed for security. I remember one of the members of our fuzzing team joking that browsers are a collection of
use-after-free bugs that coincidentally happen to be able to render HTML.
That is why the Firefox product team is “Oxidizing” Firefox, that’s our internal shorthand for “Replace components of Firefox with pieces of Servo, which is written in
Rust, a programming language that started as the personal project of a Mozilla employee. Although its development is sponsored by Mozilla, it is an open
community project.

https://coq.inria.fr/
http://www.csl.sri.com/users/shankar/VGC05/shankar-hcss.pdf

Formally Verified Browser

45

http://goto.ucsd.edu/quark/

Protects the browser kernel

User still vulnerable to some of
the most common types of
attacks: 

● XSS
● CSRF
● Session hijacking
● Redirects/forwards
● Server-side issues
● Network attacks
● Protocol spec problems

Quark is really cool, a formally verified browser using the Coq interactive theorem prover. 
 
A million lines of code have verified security properties -renderer, jpeg decoders, javascript implementation.  
 
The rest is sandboxed, and yet it’s still vulnerable to lots of protocol related issues.  
 
Like Mozilla’s Rust/oxidation/Electrolysis efforts, it’s another way to to ratchet up security and reduce the attackable surface. But still hard to quantify using the kinds of
metrics that people are often hoping to see.

http://goto.ucsd.edu/quark/

Recognize limitations of measuring security.

46

What’s left?

● Simple measures are the best measures for avoiding GIGO
○ Tag and label categories of bugs, count them

■ Root cause analysis & fix
■ Detection: Improve security testing pipeline
■ Prevention: Improve standards and training to prevent

○ Bounty dollars paid per bug category
■ Money paid is an excellent proxy for risk

○ Report on time-to-fix vs SLA requirements
● Coverage of team/tool/process/procedure, delta vs complete coverage
● TIme to close breach
● Demonstrate performance against defined goal using a Maturity Model
● Numbers don’t tell a story, write an Executive Summary

We discussed what’s hard to measure and quantify. What’s left? 
 
Even these can get tricky - what is complete coverage?
 
Time to close breach - can you really have any knowledge about the amount of certainty of whether the breach is closed? 
 
This is why the executive summary is so important - language is a much richer way of explaining these limitations than a chart or graph.

Using OpenSAMM
in a DevOps organization

47

DevOps is not a holy grail for security.
http://devops.com/2015/07/16/the-myth-of-devops-as-a-catalyst-to-improve-security/

• The security of an application environment is inherited, it’s the aggregate result of all its component
parts

• ‘Good, cheap, fast’ has not been obsoleted by DevOps.
• Deploying code 8,000 times more quickly is not a measure of risk reduction. It might help get fixes out

faster, but that doesn’t tell the whole story.
• Reducing bloat might be one of a number of goal of a devops team, but devops practices are just as

likely to increase code bloat, opacity, and attackable surface.
• Performing thousands of tests sounds good, but what if tens of thousands of tests are necessary? Or a

completely different testing methodology and toolset? What are the limitations of the methodology &
tools?

48

Security: not an inherent property of DevOps

There are many categories of attacks that automated tests are not able to identify:  
Logic flaws are one.  
Different components of a system understanding the same piece of (malicious or spurious) data to mean different things, another.  
Sometimes the problem isn’t a bug, it’s architectural deficiency. If it’s deeply layered inside a component of your system that uses its own non
standard build system, you probably won’t find it. Software tests are for known, expected code execution paths and interactions, it’s much
harder to identify all possible execution paths and orders of operations.
Thinking security testing through and automating as much as possible will yield results, but that can happen with or without devops. I’m not
saying devops is invalid, rather that it alone is not responsible for good outcomes.
Thinking that an approach delivers more than it really does is only a false sense of security, arguably worse than awareness of insufficient
security.

IT is a business support function. Security is a business risk analysis function. If you standardize and integrate things without understanding
threat, risk and security posture, what have you done?  
Ultimately the decisions are business decisions. Unfortunately, they are frequently made from the perspective of insufficient knowledge.

http://devops.com/2015/07/16/the-myth-of-devops-as-a-catalyst-to-improve-security/

49

Maturity: relates to the degree of formality and optimization of processes, ad-hoc
practices, formally defined steps, and result metrics.

Used to reach active optimization of the processes being measured.

Standard, can be used to compare between organizations…
 

Standardized
Assessment

Define
Target Measure Roadmap

Iterate
Improvement

What is a Maturity Model?

50

Maturity: relates to the degree of formality and optimization of processes, ad-hoc
practices, formally defined steps, and result metrics.

Used to reach active optimization of the processes being measured.

Standard, can be used to compare between organizations… Or can it?
 

Standardized
Assessment

Define
Target Measure Roadmap

Iterate
Improvement

What is a Maturity Model?

Maturity Models

51

“Best” practice?
- Subjective, not objective.
- There is no “best practice” for all

organizations and problem
spaces.

Maturity level
- Just because something has a

dependency on something else
isn’t proof it provides more
“maturity”

Cross-org comparison
- Value is subjective, different

orgs have different goals
- Emotional appeal, pop-psych
- Assumes other orgs being

compared to have accurate self
knowledge

Argument from Authority fallacy
- “Best practice” determination is

not repeatable or falsifiable

Maturity models are another way that security is often measured. 
 
This isn’t to say that Maturity Models are useless. I use and advocate OpenSAMM. You have to use your brain though and not take it as gospel.  
 
 

Delusion 
an idiosyncratic belief or impression that is firmly maintained despite being
contradicted by what is generally accepted as reality or rational argument, typically
a symptom of mental disorder.

Really Bad Ideas:
• Self-Service Questionnaires to Stakeholders
• Taking benchmark data too seriously

Better Idea:
• Interviews conducted by someone with domain security knowledge
• Benchmark against the roadmap that’s right for you

52

Maturity Models and Self-Delusion

Self service questionnaires - a terrible idea.  
Interviews work the best, when done by a skeptical security curmudgeon they nearly always uncover things that the person being interviewed would not have
considered 
 
Benchmark data problems:
Aggregate information
Doesn’t necessarily apply to your organization or problems
Cognitive errors: Misperception (deficiency in knowledge of the present, overestimating competence), Misremembering (Knowledge of the present colors
information remembered from the past), Impact bias (The tendency to overestimate expected future states)
Humans are not reliable observers, we tend to see what we want to see. 
The quality and applicability of the measurements of other in different situations are a tempting comparison, but aren’t especially useful since the Margin of Error is
unknowable.  

53

OpenSAMM Interview Spreadsheet

https://docs.google.com/spreadsheets/d/1mJ4XuDGKbT5brwqWzk31xS8NjniYQmo7R_flW1waNn4

Proposed Interview Spreadsheet Changes

One thing that OpenSAMM has lacked is a tool for developing your own roadmap.  
 
A few weeks ago I contributed this, it will hopefully make it into 1.2, either way you’re welcome to use it

https://docs.google.com/spreadsheets/d/1mJ4XuDGKbT5brwqWzk31xS8NjniYQmo7R_flW1waNn4

54

Security Program Roadmap

This is a sanitized sample of an alternative way to present an appsec program roadmap.  
 
You could just was easily make the left column (white boxes) show “governance, construction, verification, operations” and use to tell a story for your OpenSAMM roadmap

• OpenSAMM can be mapped to any SDLC
• It’s a framework for ratcheting up security in quarterly

increments to a desired state
• That’s my job description
• It’s extensible

– If you don’t care about comparisons, modify it to suit your needs.
• Example: OpenSAMM is missing “decommissioning” and “user

privacy”
• If you do care about benchmarking, keep two sets of books

– Official OpenSAMM framework and your own “proprietary
extensions.”

55

I still like OpenSAMM, anyway

Self service questionnaires - a terrible idea.  
Interviews work the best, when done by a skeptical security curmudgeon they nearly always uncover things that the person being interviewed would not have considered 
 
Benchmark data problems:
- Aggregate information
- Doesn’t necessarily apply to your organization or problems
- Cognitive errors: Misperception (deficiency in knowledge of the present, overestimating competence)
- Misremembering (Knowledge of the present colors information remembered from the past), Impact bias (The tendency to overestimate expected future states)
- Humans are not reliable observers, we tend to see what we want to see. 
- The quality and applicability of the measurements of other in different situations are a tempting comparison, but aren’t especially useful since the Margin of Error is unknowable.  

Get non-security engineers
to help pentest

by setting up a Red Team

56

• There aren’t enough hours in the day to test all the things
• Hacking is fun
• Lots of technologists are interested in security and hacking
• There are probably security resources in your company you didn’t even

know about, get security champions to self-identify
• CTF model not appropriate - in a real attack, the defenders are doing their

work, not on standby expecting one
• You can’t assume zero knowledge, get developers for the website or

service involved as attackers
• Gamify and make security fun, vs security being Dr. No
• Build an internal security community

57

Red Team

Get more stuff tested, more deeply

Get security champions to self-identify

Build a security community

best as monthly or bi-monthly activity for 3-4 hours, get exec approval and participants should have approval of their manager for their time.

Summary

58

• Radical open sharing of documentation: less scary than it sounds

• Security does not easily yield to quantitative measurement
– It’s easy to spend a lot of time generating metrics that don’t inform, don’t do that
– Numbers don’t tell a story, they are open to interpretation. So, tell a story.

• Bug bounty program + Maturity Model + organizational threat model to guide your
Appsec program

• Create an internal cross-organizational Red Team to build an internal security community

59

Summary

Adam Muntner  
amuntner@mozilla.com

Thank you

