
Christian Mainka / @CheariX 1,2

Vladislav Mladenov1

Tobias Wich3

Systematically Breaking and Fixing
OpenID Connect

1 Horst-Görtz Institute for IT-Security, Ruhr-University Bochum
2 Hackmanit GmbH
3 ecsec GmbH

Research Questions

• (Q1) Are old/known attacks addressed in OIDC?

• (Q2) How secure are officially referenced (certified)
libraries?

• (Q3) How can the development of SSO libraries be
brought closer to published state-of-the-art
regarding security?

2

Attacks

PrOfESSOS

OpenID Connect 1.0

On the Security of OpenID Connect

OAuth 2.0 vs. OpenID Connect 1.0

Client
Application

I authorize you
to access my
ressources

OAuth 2.0

OAuth 2.0 vs. OpenID Connect 1.0

I‘m $me

Client
Application

OpenID Connect 1.0

6

OpenID Connect: Core Phases

Client
https://honestClient.comEnd-User

Phase 1: Manual Registration

Honest OP
https://honestOP.com

regEndp authEndp tokenEndp/
userInfo/
jwksEndp

OpenID Connect: Phases with Discovery and Dynamic
Registration

Phase 1.1: Discovery

Client
https://honestClient.comEnd-User

Phase 1.2: Dynamic Registration

Phase 2: User Authentication on OP and Authentication Response

Phase 3: User Authentication on the Client

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity

OpenID Connect: Discovery

Client
https://honestClient.comEnd-User

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity
1.1.1. Discovery request:
https://honestOP.com/.well-known/webfinger

1.1.2. Discovery response:
{href, rel}

1.1.3. Metadata reuqest sent to href:
https://honestOP.com/.well-known/openid-configuration

1.1.4. Discovery OP Metadata:
{issuer, regEndp, authEndp, ….}

OpenID Connect: Phases with Discovery and Dynamic
Registration

Phase 1.1: Discovery

Client
https://honestClient.comEnd-User

Phase 1.2: Dynamic Registration

Phase 2: User Authentication on OP and Authentication Response

Phase 3: User Authentication on the Client

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity

OpenID Connect: Dynamic Registration

Client
https://honestClient.comEnd-User

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp1.2.1. Registration request:

{redirect_uri, [client_id, client_name, …]}

1.2.2. Discovery response:
{client_id, client_secret, …}

OpenID Connect: Phases with Discovery and Dynamic
Registration

Phase 1.1: Discovery

Client
https://honestClient.comEnd-User

Phase 1.2: Dynamic Registration

Phase 2: User Authentication on OP and Authentication Response

Phase 3: User Authentication on the Client

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity

OpenID Connect: User Authentication on OP
(Code Flow)

Client
https://honestClient.comEnd-User

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

Client_id, redirect_uri, scope

2.1. Auth. Request

2.2. Authentication UI

code

2.3. HTTP 302 to [redirect_uri] : Authentication Response

OpenID Connect: Phases with Discovery and Dynamic
Registration

Phase 1.1: Discovery

Client
https://honestClient.comEnd-User

Phase 1.2: Dynamic Registration

Phase 2: User Authentication on OP and Authentication Response

Phase 3: User Authentication on the Client

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity

OpenID Connect: User Authentication on OP
(Code Flow)

Client
https://honestClient.comEnd-User

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

3.1. Token Request: code, client_id, client_secret

3.2. Access Token Response: access_token, id_token

3.3. GET Userinfo Request: access_token

3.5. Login Response

3.4. UserInfo Response

Validate
id_token

eyJhbGciOiJIUzI1NiIsInR

5cCI6IkpXVCJ9.eyJleHAiO

jEzODY4OTkxMzEsImlzcyI6

ImppcmE6MTU0ODk1OTUiLCJ

xc2giOiI4MDYzZmY0Y2ExZT

QxZGY3YmM5MGM4YWI2ZDBmN

jIwN2Q0OTFjZjZkYWQ3YzY2

ZWE3OTdiNDYxNGI3MTkyMmU

5IiwiaWF0IjoxMzg2ODk4OT

UxfQ.uKqU9dTB6gKwG6jQCu

XYAiMNdfNRw98Hw_IWuA5Ma

Mo

{

"alg": "HS256",

"typ": "JWT"

}

OpenID Connect: ID Token

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

Header

Body

Signature

Verify: valid/invalid?

{

"alg": "HS256",

"typ": "JWT"

}

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

ID Token: Summary

Header

Body

Signature

Verify: valid/invalid?

= nonceexpiat

= subiss

= aud

Attacks

PrOfESSOS

OpenID Connect 1.0

On the Security of OpenID Connect

Threat Model

Threat Model

• Web attacker model

• Two Attack Categories

• Category A: with interaction of the victim

• Category B: no interaction at allCategory B

Category A

Attacker IdP

Client
https://honestClient.comEnd-User

Honest OP
https://honestOP.com

Discovery regEndp authEndp
tokenEndp/

userInfo/
jwksEndp

identity

Evil OP
https://attacker.com

Phase 2: User Authentication on OP and Authentication Response

Discovery regEndp authEndp
tokenEndp/

userInfo/
jwksEndp

Phase 2: User Authentication on OP and Authentication Response

Phase 1.1: Discovery

Phase 1.2: Dynamic RegistrationPhase 1.2: Dynamic Registration

Phase 3: User Authentication on the ClientPhase 3: User Authentication on the Client

Attacks

PrOfESSOS

OpenID Connect 1.0

On the Security of OpenID Connect

Threat Model

Single Phase Attacks

{

"alg": "HS256",

"typ": "JWT"

}

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

Attack: ID Spoofing

Header

Body

Signature

Verify: valid/invalid?

= nonceexpiat

= subiss

= aud

Implementation flaws on the Client: ID Spoofing

Phase 1.1: Discovery

Client
https://honestClient.comAttacker

Phase 1.2: Dynamic Registration

Phase 2: User Authentication on OP and Authentication Response

Phase 3: User Authentication on the Client

Evil OP
https://attacker.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity

Implementation flaws on the Client: ID Spoofing

Token created by OP: http://google.com

Issuer
http://google.com

Subject
Alice= +

Token created by OP: http://attacker.com

Issuer
http://attacker.com

Subject
Alice= +

Token created by OP: http://attacker.com

Issuer
http://google.com

Subject
Alice= +

{

"alg": "HS256",

"typ": "JWT"

}

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

Attack: Wrong Recipient

Header

Body

Signature

Verify: valid/invalid?

= nonceexpiat

= subiss

= aud

Attack: Wrong Recipient

End-User

id_token

{

…

"aud": "free-phone.com",

}

Client
https://free-iphone.com

id_token

{

…

"aud": "free-phone.com",

}

Client
https://honestClient.com

{

"alg": "HS256",

"typ": "JWT"

}

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

Attack: Replay

Header

Body

Signature

Verify: valid/invalid?

= nonceexpiat

= subiss

= aud

{

"alg": "HS256",

"typ": "JWT"

}

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

Attack: Signature Bypass

Header

Body

Signature

Verify: valid/invalid?

= nonceexpiat

= subiss

= aud

{

"alg": "HS256",

"typ": "JWT"

}

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

Attack: Signature Bypass

Header

Body

Signature

Verify: valid/invalid?

= nonceexpiat

= subiss

= aud

Implementation flaws on the Client:
Signature Verification

• alg defines Algorithm

• Supported values:

{

"alg": "HS256",

"typ": "JWT"

}

Setting alg to
„none“ allows to

remove the
signature

Attacks

PrOfESSOS

OpenID Connect 1.0

On the security of OpenID Connect

Threat Model

Single Phase Attacks

Cross Phase Attacks

Cross Phase Attacks

Client
https://honestClient.comEnd-User

Evil OP
https://attacker.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

bob@attacker.com
1.1.1. Discovery request:
https://attacker.com/.well-known/webfinger

What can go wrong?

Cross Phase Attacks

Client
https://honestClient.comEnd-User

Evil OP
https://attacker.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

bob@attacker.com

1.1.1. Discovery request:
https://attacker.com/.well-known/webfinger

1.1.2. Discovery response:
{href, rel}

1.1.3. Metadata reuqest sent to href:
https://attacker.com/.well-known/openid-configuration

1.1.4. Discovery OP Metadata:
{issuer, regEndp, authEndp, tokenEndp, userInfo, …}

ID Token
verification Phase 1.2

Phase 2 Phase 3

Cross Phase Attacks

• Issuer Confusion

• IdP Confusion

• Malicious Endpoint Attacks

IdP Confusion

Client
https://honestClient.com

End-User
Evil OP

https://attacker.com

Discovery tokenEndp/
userInfo/
jwksEndp

identity

Honest OP
https://honestOP.com

authEndp

Phase 1.2: Registration: client_id, client_secret‘

3.1. code, client_id, client_secret‘

Phase 1.1: Discovery

regEndp authEndp

2.1. HTTP Redirect: client_id, redirect_uri

2.2. HTTP Redirect: client_id, redirect_uri

2.3. Authentication and Authorization

2.3. HTTP Redirect: code

OpenID Connect: Countermeasures

• Attack concepts known since 2012
– „Do not trust me: Using malicious IdPs for analyzing and attacking

Single Sign-On“ (OpenID 2.0)

– „Your Software at my Service” (SAML 2.0)

• Attacks reported in September 2014
– Reaction in Oktober 2015

– First mitigation draft in January 2016

• Changes in the OpenID Connect and OAuth
specifications
– https://tools.ietf.org/html/draft-jones-oauth-mix-up-mitigation-01

https://tools.ietf.org/html/draft-jones-oauth-mix-up-mitigation-01

OpenID Connect: Countermeasures

Phase 1.1: Discovery

Client
https://honestClient.comEnd-User

Phase 1.2: Dynamic Registration

Phase 2: User Authentication on OP and Authentication Response

Phase 3: User Authentication on the Client

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity

OpenID Connect: Countermeasures
(Code Flow)

Client
https://honestClient.com

End-User
Evil OP

https://attacker.com

Discovery tokenEndp/
userInfo/
jwksEndp

identity

Honest OP
https://honestOP.com

authEndp

Phase 1.2: Registration: client_id, client_secret‘

3.1. code, client_id, client_secret‘

Phase 1.1: Discovery

regEndp authEndp

2.1. HTTP Redirect: client_id, redirect_uri

2.2. HTTP Redirect: client_id, redirect_uri

2.3. Authentication and Authorization

2.3. HTTP Redirect: code , issuer

Malicious Endpoints Attacks: Idea

The maliciously acting Discovery service

influences partially the protocol execution in

Phase 1.2, Phase 2 and Phase 3

Malicious Endpoints Attacks: SSRF

Client
https://honestClient.com

Service 1
http://192.168.0.1

Service 2
http://192.168.0.2

Service 3
http://192.168.0.3

Discovery OP
Metadata

Evil OP
https://attacker.com

Malicious Endpoints Attacks: DoS

Client
https://honestClient.com

Discovery OP
Metadata

Evil OP
https://attacker.com

Linux Image Server

Dowload Large
Image file, 4GB

Malicious Endpoints Attacks: DoS

OpenID Connect with 5 parallel
connections to an Honest OP

OpenID Connect with 5 parallel
connections to a Malicious

Discovery service

Evaluation Results

Attacks

PrOfESSOS

OpenID Connect 1.0

On the Security of OpenID Connect

PrOfESSOS

Attacker OP

Testing Service Providers Testing Identity Providers

Pentester Service Provider

Security
Test Runner

https://sso-security.org

Honest OP
https://good_idp.orghttps://bad_idp.org

Attacker SP
https://bad_sp.org

Identity Provider

Stage 1:
Configuration

Stage 2:
Config. evaluation

Stage 3:
Security Tests

Stage 2:
Config. evaluation

Stage 3:
Security Tests

Stage 3:
Security Report

PrOfESSOS

• Current status

 Configuration and Learning stage

 Security tests for Service Providers

 20 security tests implemented

✘More tests will be implemented

✘ Countermeasure advices and improvements

✘ Security evaluation of Identity Providers

✘ OAuth 2.0

Conclusion

• OIDC Specification addresses Single Phase Attacks

• But stupid implementations flaws will always exist

– Specifications are too complex to understand

• Security testing during development can help

– PrOfESSOS

Sources

• http://ssoattacks.org/OIDC_MaliciousDiscoveryService/

• http://web-in-security.blogspot.de/

• „On the security of modern Single Sign-On Protocols:
Second-Order Vulnerabilities in OpenID Connect”

– http://arxiv.org/abs/1508.04324

• Mitigation

– https://tools.ietf.org/html/draft-jones-oauth-mix-up-mitigation-
01

http://ssoattacks.org/OIDC_MaliciousDiscoveryService/
http://web-in-security.blogspot.de/
http://arxiv.org/abs/1508.04324
https://tools.ietf.org/html/draft-jones-oauth-mix-up-mitigation-01

Christian Mainka / @CheariX 1,2

Vladislav Mladenov1

Tobias Wich3

Systematically Breaking and Fixing
OpenID Connect

1 Horst-Görtz Institute for IT-Security, Ruhr-University Bochum
2 Hackmanit GmbH
3 ecsec GmbH

