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Research Questions

• (Q1) Are old/known attacks addressed in OIDC?

• (Q2) How secure are officially referenced (certified) 
libraries?

• (Q3) How can the development of SSO libraries be 
brought closer to published state-of-the-art 
regarding security?
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Attacks

PrOfESSOS

OpenID Connect 1.0

On the Security of OpenID Connect



OAuth 2.0 vs. OpenID Connect 1.0

Client
Application

I authorize you
to access my
ressources

OAuth 2.0



OAuth 2.0 vs. OpenID Connect 1.0

I‘m $me

Client
Application

OpenID Connect 1.0
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OpenID Connect: Core Phases

Client
https://honestClient.comEnd-User

Phase 1: Manual Registration

Honest OP
https://honestOP.com

regEndp authEndp tokenEndp/
userInfo/
jwksEndp



OpenID Connect: Phases with Discovery and Dynamic 
Registration

Phase 1.1: Discovery

Client
https://honestClient.comEnd-User

Phase 1.2: Dynamic Registration

Phase 2: User Authentication on OP and Authentication Response

Phase 3: User Authentication on the Client

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity



OpenID Connect: Discovery

Client
https://honestClient.comEnd-User

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity
1.1.1. Discovery request:
https://honestOP.com/.well-known/webfinger

1.1.2. Discovery response: 
{href, rel}

1.1.3. Metadata reuqest sent to href:
https://honestOP.com/.well-known/openid-configuration

1.1.4. Discovery OP Metadata: 
{issuer, regEndp, authEndp, ….}



OpenID Connect: Phases with Discovery and Dynamic 
Registration

Phase 1.1: Discovery

Client
https://honestClient.comEnd-User

Phase 1.2: Dynamic Registration

Phase 2: User Authentication on OP and Authentication Response

Phase 3: User Authentication on the Client

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity



OpenID Connect: Dynamic Registration

Client
https://honestClient.comEnd-User

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp1.2.1. Registration request:

{redirect_uri, [client_id, client_name, …]}

1.2.2. Discovery response: 
{client_id, client_secret, …}



OpenID Connect: Phases with Discovery and Dynamic 
Registration

Phase 1.1: Discovery

Client
https://honestClient.comEnd-User

Phase 1.2: Dynamic Registration

Phase 2: User Authentication on OP and Authentication Response

Phase 3: User Authentication on the Client

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity



OpenID Connect: User Authentication on OP 
(Code Flow)

Client
https://honestClient.comEnd-User

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

Client_id, redirect_uri, scope

2.1. Auth. Request

2.2. Authentication UI

code

2.3. HTTP 302 to [redirect_uri] : Authentication Response



OpenID Connect: Phases with Discovery and Dynamic 
Registration

Phase 1.1: Discovery

Client
https://honestClient.comEnd-User

Phase 1.2: Dynamic Registration

Phase 2: User Authentication on OP and Authentication Response

Phase 3: User Authentication on the Client

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity



OpenID Connect: User Authentication on OP 
(Code Flow)

Client
https://honestClient.comEnd-User

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

3.1. Token Request: code, client_id, client_secret

3.2. Access Token Response: access_token, id_token

3.3. GET Userinfo Request: access_token

3.5. Login Response

3.4. UserInfo Response

Validate
id_token
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{

"alg": "HS256",

"typ": "JWT"

}

OpenID Connect: ID Token

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

Header

Body

Signature

Verify: valid/invalid?



{

"alg": "HS256",

"typ": "JWT"

}

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

ID Token: Summary

Header

Body

Signature

Verify: valid/invalid?

= nonceexpiat

= subiss

= aud



Attacks
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OpenID Connect 1.0

On the Security of OpenID Connect

Threat Model



Threat Model

• Web attacker model

• Two Attack Categories

• Category A: with interaction of the victim

• Category B: no interaction at allCategory B

Category A



Attacker IdP

Client
https://honestClient.comEnd-User

Honest OP
https://honestOP.com

Discovery regEndp authEndp
tokenEndp/

userInfo/
jwksEndp

identity

Evil OP
https://attacker.com

Phase 2: User Authentication on OP and Authentication Response

Discovery regEndp authEndp
tokenEndp/

userInfo/
jwksEndp

Phase 2: User Authentication on OP and Authentication Response

Phase 1.1: Discovery

Phase 1.2: Dynamic RegistrationPhase 1.2: Dynamic Registration

Phase 3: User Authentication on the ClientPhase 3: User Authentication on the Client



Attacks

PrOfESSOS

OpenID Connect 1.0

On the Security of OpenID Connect

Threat Model

Single Phase Attacks



{

"alg": "HS256",

"typ": "JWT"

}

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

Attack: ID Spoofing

Header

Body

Signature

Verify: valid/invalid?

= nonceexpiat

= subiss

= aud



Implementation flaws on the Client: ID Spoofing

Phase 1.1: Discovery

Client
https://honestClient.comAttacker

Phase 1.2: Dynamic Registration

Phase 2: User Authentication on OP and Authentication Response

Phase 3: User Authentication on the Client

Evil OP
https://attacker.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity



Implementation flaws on the Client: ID Spoofing

Token created by OP: http://google.com

Issuer
http://google.com

Subject
Alice= +

Token created by OP: http://attacker.com

Issuer
http://attacker.com

Subject
Alice= +

Token created by OP: http://attacker.com

Issuer
http://google.com

Subject
Alice= +



{

"alg": "HS256",

"typ": "JWT"

}

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

Attack: Wrong Recipient

Header

Body

Signature

Verify: valid/invalid?

= nonceexpiat

= subiss

= aud



Attack: Wrong Recipient

End-User

id_token

{

…

"aud": "free-phone.com",

}

Client
https://free-iphone.com

id_token

{

…

"aud": "free-phone.com",

}

Client
https://honestClient.com



{

"alg": "HS256",

"typ": "JWT"

}

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

Attack: Replay

Header

Body

Signature

Verify: valid/invalid?

= nonceexpiat

= subiss

= aud



{

"alg": "HS256",

"typ": "JWT"

}

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

Attack: Signature Bypass

Header

Body

Signature

Verify: valid/invalid?

= nonceexpiat

= subiss

= aud



{

"alg": "HS256",

"typ": "JWT"

}

{

"iss": "https://honestOP.com/",

"sub": "user1",

"exp": 1444148908,

"iat": 1444148308,

"nonce": "40c6b33b9a2e",

"aud": "honestClientId",

}

Attack: Signature Bypass

Header

Body

Signature

Verify: valid/invalid?

= nonceexpiat

= subiss

= aud



Implementation flaws on the Client:
Signature Verification

• alg defines Algorithm

• Supported values:

{

"alg": "HS256",

"typ": "JWT"

}

Setting alg to
„none“ allows to

remove the
signature
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On the security of OpenID Connect

Threat Model

Single Phase Attacks

Cross Phase Attacks



Cross Phase Attacks

Client
https://honestClient.comEnd-User

Evil OP
https://attacker.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

bob@attacker.com
1.1.1. Discovery request:
https://attacker.com/.well-known/webfinger

What can go wrong?



Cross Phase Attacks

Client
https://honestClient.comEnd-User

Evil OP
https://attacker.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

bob@attacker.com

1.1.1. Discovery request:
https://attacker.com/.well-known/webfinger

1.1.2. Discovery response: 
{href, rel}

1.1.3. Metadata reuqest sent to href:
https://attacker.com/.well-known/openid-configuration

1.1.4. Discovery OP Metadata: 
{issuer, regEndp, authEndp, tokenEndp, userInfo, …}

ID Token
verification Phase 1.2

Phase 2 Phase 3



Cross Phase Attacks

• Issuer Confusion

• IdP Confusion

• Malicious Endpoint Attacks



IdP Confusion

Client
https://honestClient.com

End-User
Evil OP

https://attacker.com

Discovery tokenEndp/
userInfo/
jwksEndp

identity

Honest OP
https://honestOP.com

authEndp

Phase 1.2: Registration: client_id, client_secret‘

3.1. code, client_id, client_secret‘

Phase 1.1: Discovery

regEndp authEndp

2.1. HTTP Redirect: client_id, redirect_uri

2.2. HTTP Redirect: client_id, redirect_uri

2.3. Authentication and Authorization

2.3. HTTP Redirect: code



OpenID Connect: Countermeasures

• Attack concepts known since 2012
– „Do not trust me: Using malicious IdPs for analyzing and attacking 

Single Sign-On“ (OpenID 2.0)

– „Your Software at my Service” (SAML 2.0)

• Attacks reported in September 2014
– Reaction in Oktober 2015

– First mitigation draft in January 2016 

• Changes in the OpenID Connect and OAuth
specifications
– https://tools.ietf.org/html/draft-jones-oauth-mix-up-mitigation-01

https://tools.ietf.org/html/draft-jones-oauth-mix-up-mitigation-01


OpenID Connect: Countermeasures

Phase 1.1: Discovery

Client
https://honestClient.comEnd-User

Phase 1.2: Dynamic Registration

Phase 2: User Authentication on OP and Authentication Response

Phase 3: User Authentication on the Client

Honest OP
https://honestOP.com

Discovery regEndp authEndp tokenEndp/
userInfo/
jwksEndp

identity



OpenID Connect: Countermeasures
(Code Flow)

Client
https://honestClient.com

End-User
Evil OP

https://attacker.com

Discovery tokenEndp/
userInfo/
jwksEndp

identity

Honest OP
https://honestOP.com

authEndp

Phase 1.2: Registration: client_id, client_secret‘

3.1. code, client_id, client_secret‘

Phase 1.1: Discovery

regEndp authEndp

2.1. HTTP Redirect: client_id, redirect_uri

2.2. HTTP Redirect: client_id, redirect_uri

2.3. Authentication and Authorization

2.3. HTTP Redirect: code , issuer



Malicious Endpoints Attacks: Idea

The maliciously acting Discovery service

influences partially the protocol execution in 

Phase 1.2, Phase 2 and Phase 3



Malicious Endpoints Attacks: SSRF

Client
https://honestClient.com

Service 1
http://192.168.0.1

Service 2
http://192.168.0.2

Service 3
http://192.168.0.3

Discovery OP 
Metadata

Evil OP
https://attacker.com



Malicious Endpoints Attacks: DoS

Client
https://honestClient.com

Discovery OP 
Metadata

Evil OP
https://attacker.com

Linux Image Server

Dowload Large 
Image file, 4GB



Malicious Endpoints Attacks: DoS

OpenID Connect with 5 parallel 
connections to an Honest OP

OpenID Connect with 5 parallel 
connections to a Malicious

Discovery service



Evaluation Results
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PrOfESSOS

Attacker OP

Testing Service Providers Testing Identity Providers

Pentester Service Provider

Security 
Test Runner

https://sso-security.org

Honest OP
https://good_idp.orghttps://bad_idp.org

Attacker SP
https://bad_sp.org

Identity Provider

Stage 1:
Configuration

Stage 2:
Config. evaluation

Stage 3:
Security Tests

Stage 2:
Config. evaluation

Stage 3:
Security Tests

Stage 3:
Security Report





PrOfESSOS

• Current status

 Configuration and Learning stage

 Security tests for Service Providers

 20 security tests implemented

✘More tests will be implemented

✘ Countermeasure advices and improvements

✘ Security evaluation of Identity Providers

✘ OAuth 2.0



Conclusion

• OIDC Specification addresses Single Phase Attacks

• But stupid implementations flaws will always exist

– Specifications are too complex to understand

• Security testing during development can help

– PrOfESSOS
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