

Analyzing and Detecting Flash-based Malware

Christian Wressnegger, Fabian Yamaguchi,
Daniel Arp, and Konrad Rieck

AnalyzingandDetectingFlash-basedMalware|Page3/40

ChristianWre!§“$ADG=(„#$….who?

◾ PhD candidate at the Institute of System Security
◾ Established in April 2016 in Brunswick, Germany
by Prof. Konrad Rieck

◾ Previously at the University of Göttingen

◾ TU Braunschweig
◾ Oldest „institute of technology“ in
Germany (founded in 1745)

◾ 40-year-long history of computer science

AnalyzingandDetectingFlash-basedMalware|Page5/40

Malware

◾ Malicious software (Malware)
◾ Lasting problem of computer security
◾ Omnipresence of Trojans, Bots, Adware, …
◾ Increase oftargeted attacks using Malware

◾ Flash-based malware
◾ Malware targeting the Adobe Flash platform
◾ Drive-by-Downloads, malicious redirects, exploits, ...

AnalyzingandDetectingFlash-basedMalware|Page6/40

Adobe Flash

◾ Flash is dead!
◾ Deployed on 500 million devices across different platforms
◾ Used on 25% of the top 1,000 Alexa web sites

◾ Dynamic and multimedia contenton webpages
◾ Advertisement, video streaming, gaming, …
◾ 20 years of deployment
◾ Powerful scripting language: ActionScript

AnalyzingandDetectingFlash-basedMalware|Page7/40

Adobe Flash Vulnerabilities

◾ Increasingnumber of CVEs
◾ About 550 different vulnerabilities in total
◾ Until 2015:167 new vulnerabilities (80% code execution)
 Disclaimer! Effective August 2015

AnalyzingandDetectingFlash-basedMalware|Page9/40

Attack Vectors and Scenarios

Concrete attacks may fall into more than one of these categories

1.Structural Exploits against the Flash Player
◾ Vulnerabilities in the file format parser

2.Malicious ActionScript code
◾ Launchingor preparing exploits(Obfuscation, heap-spraying, ...)

3.Environment fingerprinting
◾ Selecting targets based on interpreter or OS information

AnalyzingandDetectingFlash-basedMalware|Page10/40

Obfuscation

◾ Staged execution
◾ Dynamic code-loading in form of another animation
loadMovie (ActionScript 2), Loaderobject(ActionScript3)

◾ Layered encryption/ polymorphism
Runtime-packers (secureSWF, DoSWF)

◾ Exploit legacy code

◾ Source-code Obfuscation
◾ Variable substitution, string assembly, dead code, etc.

◾ Probing the execution environment
◾ Triggering a malware's payload on specific systems only

AnalyzingandDetectingFlash-basedMalware|Page11/ 40

Probing the environment

◾ Information about the execution environment
◾ System.capabilities (ActionScript 2)
◾ flash.system.Capabilities (ActionScript 3)

◾ LadyBoyle malware exploiting CVE-2015-323

switch (this.version) {
case "win 11,5,502,146": break;

 case "win 11,5,502,135": break;
 case "win 11,5,502,110": break;
 case "win 11,4,402,287": break;
 case "win 11,4,402,278": break;
 case "win 11,4,402,265": break;

default:
 return this.empty();
}

md5: cac794adea27aa54f2e5ac3151050845

AnalyzingandDetectingFlash-basedMalware|Page12/40

◾ Comprehensive analysis of Flash animations
Support for all versions of ActionScript and Adobe Flash platforms
◾ Structural Analysis (static)
◾ Guided code-execution (dynamic)

◾ Learning-based detection of Flash-based malware
◾ Detects 90–95% of malicious Flash files at 0.1% and 1.0% FPs

– Significantly outperforms related approaches
– Best learning-based detector for Flash-based Malware

◾ No need for manually constructed detection rules

AnalyzingandDetectingFlash-basedMalware|Page14/ 40

Structural Analysis

◾ Flash animations are composed out of “tags”
◾ Containers to store code, animation specs and data
(audio, video, images, fonts, etc.)

◾ Future versions may extend on the number of tags
◾ Possible occurring nested (DefineShape, ...)

◾ Offering a huge attack surface
◾ Manyexploits relyona specific (sequences of) tag
◾ Memory corruption exploits such as CVE-2007-0071

AnalyzingandDetectingFlash-basedMalware|Page15/ 40

Structure Reports

◾ Exemplary report for a LadyBoyle sample using CVE-2015-323

◾ More compact:

 69 FileAttributes
 77 Metadata
 9 SetBackgroundColor
 2 DefineShape
 39 DefineSprite
 26 PlaceObject2
 86 DefineSceneAndFrameLabelData
 43 FrameLabel
 87 DefineBinaryData // Payload
 87 DefineBinaryData // Payload
 82 DoABC // ActionScript 3
 76 SymbolClass
 1 ShowFrame

69 77 9 2 [39 26] 86 43 87 87 82 76 1

md5: cac794adea27aa54f2e5ac3151050845

AnalyzingandDetectingFlash-basedMalware|Page16/40

Analyzing Code

◾ Dynamic code analysis
◾ Single execution “as-is” is not sufficient
◾ Covering all execution paths is not feasible
◾ Heuristics needed!

◾ Previous approaches
◾ Determine which paths to execute based on external input
(“Exploring Multiple Execution Paths for Malware Analysis“, Moser et al.)

◾ Symbolic execution of code
(“A Symbolic Execution Framework for JavaScript“, Saxena et al.)

◾ Multi-execution of branches along the intended path
(“Rozzle: De-cloakingInternet Malware“, Kolbitsch etal.)

AnalyzingandDetectingFlash-basedMalware|Page17/ 40

Guided Code-Execution

◾ Gordon: Guide the interpreter towards indicative code regions
◾ Branches that contains indicative functions
(loadMovie, loadBytes, ByteArray, ...)

◾ Paths with many instructions

◾ Two-step procedure
◾ Determine Control-flow statically
◾ Use CFG to guide the analyzer

– Multiple runs possible
– Force Execution at environment sensitive conditions

14

3

2

2

Run #1:
Loading of
code

Run #2:
Bestcode
coverage

3 6

4

5 12

9

15

3

9

?loadMovie

AnalyzingandDetectingFlash-basedMalware|Page18/40

Execution Reports

◾ Excerpt of a report for a sample using CVE-2015-323

◾ For automatic processing reports meta data is omitted

R1 973: pushString "fla"
R1 975: pushString "sh.uti"
R1 977: add "fla" + "sh.uti"
R1 978: pushString "ls.Byt"
R1 980: add "flash.uti" + "ls.Byt"
R1 981: pushString "eArray"
R1 983: add "flash.utils.Byt" + "eArray"
R1 984: callProperty [ns:flash.utils] getDefinitionByName 1
R1 > Looking for definition of
R1 > [ns:flash.utils] ByteArray
R1 > Getting definition for
R1 > [ns:flash.utils] ByteArray
R1 987: getLex: [ns:] Class

md5: 4f293f0bda8f851525f28466882125b7

AnalyzingandDetectingFlash-basedMalware|Page19/40

Learning-based Detection

◾ Preprocessing of reports
◾ Structure reports: cf. compact representation

◾ Execution reports: Instruction names and parameters only
– Parameters are replaced with their respective type

◾ Embedding: n-gram models of structure and execution reports

◾ Learning: Classification using Support Vector Machines (SVMs)

69 77 9 2 [39 26] 86 43 87 87 82 76 1

 pushString STR
add STR + STR

 callProperty getDefinitionByName NUM
getLex ID

AnalyzingandDetectingFlash-basedMalware|Page20/40

n-Gram Models

◾ Used to embed string data into vector space
◾ Generalization of the Bag-of-Words model
◾ String represented as bag of features

◾ Different variations:
◾ Words
◾ Byte n-grams
◾ Word n-grams

AnalyzingandDetectingFlash-basedMalware|Page21/ 40

n-Gram Models

◾ Used to embed string data into vector space
◾ Generalization of the Bag-of-Words model
◾ String represented as bag of features

◾ Different variations:
◾ Words
◾ Byte n-grams
◾ Word n-grams

Used

to

embed

string

into

data

vector

space

AnalyzingandDetectingFlash-basedMalware|Page22/ 40

n-Gram Models

◾ Used to embed string data into vector space
◾ Generalization of the Bag-of-Words model
◾ String represented as bag of features

◾ Different variations:
◾ Words
◾ Byte n-grams
◾ Word n-grams

Used␣

sedt␣

edto␣

dto␣ ␣

␣toe␣

oemb␣

␣embe

embed

...

toem␣

5

AnalyzingandDetectingFlash-basedMalware|Page23/40

n-Gram Models

◾ Used to embed string data into vector space
◾ Generalization of the Bag-of-Words model
◾ String represented as bag of features

◾ Different variations:
◾ Words
◾ Byte n-grams
◾ Word n-grams

Used to embed

to embedstring

embed string data

stringdata into

...

3

AnalyzingandDetectingFlash-basedMalware|Page24/ 40

Embedding of n-grams in Vectors

◾ Assign each n-gram a dimension in the vector

◾ Embeddings
◾ Counting

◾ Binary occurrence

Φ : x (Φs(x))s∈S

hashed

Φs= { 1

0} n-gram in ~
s x

Φs= n-gram in # s x

AnalyzingandDetectingFlash-basedMalware|Page27/ 40

n-Grams of Tag Identifiers

◾ Example for the structure report
◾ 4-grams of tag identifiers

69 77 9 2 [39 26] 86 43 87 87 82 76 1

69 77 9 2] 86 43 87
 77 9 2 [86 43 87 87
 9 2 [39 43 87 87 82
 2 [39 26 87 87 82 76
 [39 26] 87 82 76 1

AnalyzingandDetectingFlash-basedMalware|Page28/40

n-Grams of Instructions and Parameters

◾ Example for the execution report
◾ 4-grams of instructions/ params

◾ No need for manually constructing detection rules
◾ Implicit representation of instruction counts, call frequencies, etc.

pushString STR add STR
 STR add STR +

add STR + STR
 STR + STR callProperty

+ STR callProperty getDefinitionByName

...

AnalyzingandDetectingFlash-basedMalware|Page29/40

Learning the Classifier

◾ Support Vector Machines (SVMs)
◾ Modern supervised learning algorithm for classification
◾ Invented by Vapnik (1963) and kernelized by Boser (1992)
◾ Well-known for its effectiveness, efficiency and robustness

◾ Important concepts
◾ Hyperplane with maximum margin
◾ Regularization by softening the hyperplane

– Let’s you compensate mistakes

Margin

Support vectors

AnalyzingandDetectingFlash-basedMalware|Page30/40

Evaluation

◾ Datasets
◾ 26,600 Flash Animations collected over 12 weeks
◾ 1,923 malicious and 24,671 benign samples

◾ How wellare we able to detectFlash-based malware?
◾ Comparison to the state-of-the-art methods
◾ Is Gordon applicable in a continuous setting?

◾ What's all the fuss about two different analyses?
◾ Wouldn't be one of them enough?

AnalyzingandDetectingFlash-basedMalware|Page31/40

Experimental Setting

◾ Temporal split of the data
◾ Weeks 1-6 for training, weeks 7-9 for validation, and
the remainder, weeks 10-12 for testing

◾ All test data has been collected after training

◾ Related approaches
◾ FlashDetect (T. van Overveldt et al, RAID 2012)

– Adjusted to 1% false-positives
– Notsupported version havebeen excluded(version8andbelow)

◾ Virus scanners listed at VirusTotal

AnalyzingandDetectingFlash-basedMalware|Page32/40

0.0

0.2

0.4

0.6

0.8

1.0

D
e

te
c
ti
o

n
 r

a
te

Comparative Evaluation

◾ Gordon is on a par with tradition approaches
◾ No manual effort needed, though

FlashDetect: T. van Overveldt et al, RAID 2012

95.2%
90.0%

93.5%

25.6%

0.1%
1.0%

82.3%

AnalyzingandDetectingFlash-basedMalware|Page33/40

Combined Detection Performance

◾ Gordon benefits from two orthogonal analyses
◾ Individual representations only detect 60–65%at 0.1% FPs

0.000 0.005 0.010 0.015 0.020

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

D
e

te
c
ti
o

n
 r

a
te

90%
95%

Gordon

Guided execution

Structural analysis

AnalyzingandDetectingFlash-basedMalware|Page34/ 40

3 4 5 6 7 8 9 10 11 12

Week

0.0

0.2

0.4

0.6

0.8

1.0

D
e

te
c
ti
o

n
 r

a
te

Linear regression

Gordon

Temporal Evaluation

◾ Applied to 12 consecutive weeks: 80–99% detection rate
◾ Clear trend towards Gordon's optimal performance

AnalyzingandDetectingFlash-basedMalware|Page35/40

Summary

◾ Comprehensive AnalysisofFlash-based malware
◾ Structural analysis
◾ Guided code-execution

– Directed analysis of indicative code regions

◾ Effective Detection of a large variaty of Flash-based malware
◾ Highdetectionrate:90–95%ofmalicioussamples

– Low false-positve rates
– Best learning-based detector for Flash-based Malware

◾ Can be used to bootstrap traditional methods

AnalyzingandDetectingFlash-basedMalware|Page36/ 40

Thank you. Questions?

Analyzing and Detecting Flash-based Malware

